EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book Deep Learning with Python  A Fundamentals Guide to Understanding Machine Learning and Artificial Intelligence with Scikit Learn  Tensorflow  and

Download or read book Deep Learning with Python A Fundamentals Guide to Understanding Machine Learning and Artificial Intelligence with Scikit Learn Tensorflow and written by Sebastian Dark and published by Independently Published. This book was released on 2018-11 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Curious to discover the revolutionary technology that is shaping our future and changing the world? Deep learning is a part of the field of computer science and a subset of machine learning that involves computer systems being able to "learn" unsupervised with data that is unlabeled or unstructured. In 2017, AlphaGo, which is AI developed by Google DeepMind and started off by only knowing the rules of the game, was eventually able to train itself and beat Ke Jie, the world No.1 ranked player at the time. Although this may not seem that impressive at first, it is important to understand that Go is a very complex game that many programmers were not able to trump with AI in the past. Although Go is an interesting example, the possibilities of using machine learning are limitless. From retail to medicine to finance, machine learning has the ability to change each industry it comes into contact with. In fact, this revolution has already begun and will only continue to get bigger. According to statista.com, the artificial intelligence industry is set to grow exponentially in the next few years from $7 Billion in 2018 to $90 Billion in 2025! This isn't something you can afford to miss. Without a doubt it is the future. However, it is as complex as it is revolutionary. If you do not have a background or any experience in the field, it is easy to get bogged down by all the complicated concepts and term. And if you are at a more advanced level, the information you find won't be thorough enough. In this book, you will find the perfect balance between the information being very thorough and being able to understand it. Although tailored for beginners, it won't contain simple and easily accessible information. You will dive deep into the field but will be carefully led through it in a way that will make everything easy to understand even if you do not have a technical background in computer programming. In this Guide, you will discover... What Machine Learning and Deep Learning Is And How You Can Use It To Change The World How The Field Can Be Broken Down And Learned In A Manageable Way Various Applications and Potential of Deep Learning That You Can Utilize - That You May Never Have Even Imagined Supervised And Unsupervised Learning - And Breaking It Down Step By Step How You Can Create And Train Deep Learning Models Where and How To Install the Best Programs So You Can Get Started Today Sample Codes And Datasets To Practice Along With And much more! If you are finally prepared to begin grasping this revolutionary technology at a high level despite what your technical background may be, Click "Add to Cart" Now! **Get the Kindle eBook version for FREE when you buy the Paperback version of this book!**

Book Python for Finance

    Book Details:
  • Author : Yves Hilpisch
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2018-12-05
  • ISBN : 1492024295
  • Pages : 720 pages

Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Book Python Deep Learning

    Book Details:
  • Author : Valentino Zocca
  • Publisher : Packt Publishing Ltd
  • Release : 2017-04-28
  • ISBN : 1786460661
  • Pages : 406 pages

Download or read book Python Deep Learning written by Valentino Zocca and published by Packt Publishing Ltd. This book was released on 2017-04-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python. About This Book Explore and create intelligent systems using cutting-edge deep learning techniques Implement deep learning algorithms and work with revolutionary libraries in Python Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more Who This Book Is For This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired. What You Will Learn Get a practical deep dive into deep learning algorithms Explore deep learning further with Theano, Caffe, Keras, and TensorFlow Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines Dive into Deep Belief Nets and Deep Neural Networks Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Get to know device strategies so you can use deep learning algorithms and libraries in the real world In Detail With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results. Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques. Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside. Style and approach Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.

Book Python Programming

    Book Details:
  • Author : Andrew Park
  • Publisher :
  • Release : 2020-08-22
  • ISBN :
  • Pages : 304 pages

Download or read book Python Programming written by Andrew Park and published by . This book was released on 2020-08-22 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to learn Python in one week (or less) and learn it well, with useful applications to Data Analysis, Machine Learning and Data Science, then keep reading. Python is one of the most beloved programming languages in any circle of programmers. Software engineers, hackers, and Data Scientists alike are in love with the versatility that Python has to offer. Besides, the Object-Oriented feature of Python coupled with its flexibility is also one of the major attractions for this language. That's the reason why Python is a perfect fit with Data Analysis, Machine Learning and Data Science. Data is the future. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. The goal of this 4-in-1 bundle is simple: explaining everything you need to know to Master Python. With a special emphasis on the main steps that are needed to correctly implement Data Analysis and Machine Learning algorithms, In manuscript one, Python for Beginners, you will learn: How to install Python What are the different Python Data Types and Variables Basic Operators of Python Language Data Structures and Functions Conditional and Loops in Python And Much More! In manuscript two, Python Advanced Guide, you will master: Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools Exception Handling Working with Files And Much More! In manuscript three, Python for Data Analysis, you will learn: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis The 7 Python libraries that make Python one of the best choices for Data Analysis Pandas, Jupyter and PyTorch And Much More! In manuscript four, Applications to Data Science, you will understand: How Data Visualization and Matplotlib can help you to understand the data you are working with. Neural Networks Decision Trees What industries are using data to improve their business with 14 real-world applications And So Much More! Where most books about Python programming are theoretical and have few or little practical examples, this book provides lots of simple, step-by-step examples and illustrations that are used to underline key concepts and help improve your understanding. Furthermore, topics are carefully selected to give you broad exposure to Python, while not overwhelming you with too much information. Also, the outputs of ALL the examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Even if you have never coded before, this is the perfect guide because it breaks down complex concepts into simple steps and in a concise and simple way that fits well with beginners. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them, and the most important real-world applications. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy!

Book Deep Learning for Coders with fastai and PyTorch

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Book Machine Learning Fundamentals

Download or read book Machine Learning Fundamentals written by Hyatt Saleh and published by Packt Publishing Ltd. This book was released on 2018-11-29 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the flexibility and features of scikit-learn and Python, build machine learning algorithms that optimize the programming process and take application performance to a whole new level Key FeaturesExplore scikit-learn uniform API and its application into any type of modelUnderstand the difference between supervised and unsupervised modelsLearn the usage of machine learning through real-world examplesBook Description As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains you how to use the syntax of scikit-learn. You'll study the difference between supervised and unsupervised models, as well as the importance of choosing the appropriate algorithm for each dataset. You'll apply unsupervised clustering algorithms over real-world datasets, to discover patterns and profiles, and explore the process to solve an unsupervised machine learning problem. The focus of the book then shifts to supervised learning algorithms. You'll learn to implement different supervised algorithms and develop neural network structures using the scikit-learn package. You'll also learn how to perform coherent result analysis to improve the performance of the algorithm by tuning hyperparameters. By the end of this book, you will have gain all the skills required to start programming machine learning algorithms. What you will learnUnderstand the importance of data representationGain insights into the differences between supervised and unsupervised modelsExplore data using the Matplotlib libraryStudy popular algorithms, such as k-means, Mean-Shift, and DBSCANMeasure model performance through different metricsImplement a confusion matrix using scikit-learnStudy popular algorithms, such as Naïve-Bayes, Decision Tree, and SVMPerform error analysis to improve the performance of the modelLearn to build a comprehensive machine learning programWho this book is for Machine Learning Fundamentals is designed for developers who are new to the field of machine learning and want to learn how to use the scikit-learn library to develop machine learning algorithms. You must have some knowledge and experience in Python programming, but you do not need any prior knowledge of scikit-learn or machine learning algorithms.

Book Python Programming and Machine Learning

Download or read book Python Programming and Machine Learning written by John S Code and published by . This book was released on 2020-04-24 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you new to machine learning? Do you want to learn how to do machine learning with Python? Have you been thinking of learning Python as your first programming language?Artificial intelligent, Data analysis, Coding languages are subjects you need to start a super career today. The use of machine learning offers incredible opportunities!This ultimate book will give you the opportunity to understand coding languages and analysing big data to help the decision makers into meaningful information.Why with Python? Because Python is a powerful interpreted language and the best programming language to start with.Python is a complete language and platform where you can apply both research and development production. This book includes: Python Programming for Beginners This book can be your easy guide to understand coding language, Python programming, and data analysis with tricks and tools. It comes with 11 chapters that will teach you about python programming. Python Machine Learning It can be your essential book to know about artificial intelligence, neural network, mastering, and deep learning about the fundamentals of ML with Python. It consists of 12 chapters that will help you hone your skills and knowledge about machine learning. Improve your coding skills starting with an easy guide and master the fundamentals of machine learning with Python. You do not need any experience to change your career, just learn this book. So, what are you waiting for? Purchase yours today!

Book Building Machine Learning Systems with Python

Download or read book Building Machine Learning Systems with Python written by Willi Richert and published by Packt Publishing Ltd. This book was released on 2013-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Nikhil Ketkar and published by Apress. This book was released on 2021-04-10 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook’s Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. What You'll Learn Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models Who This Book Is For Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.

Book Advanced Deep Learning with Python

Download or read book Advanced Deep Learning with Python written by Ivan Vasilev and published by Packt Publishing Ltd. This book was released on 2019-12-12 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key FeaturesGet to grips with building faster and more robust deep learning architecturesInvestigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorchApply deep neural networks (DNNs) to computer vision problems, NLP, and GANsBook Description In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learnCover advanced and state-of-the-art neural network architecturesUnderstand the theory and math behind neural networksTrain DNNs and apply them to modern deep learning problemsUse CNNs for object detection and image segmentationImplement generative adversarial networks (GANs) and variational autoencoders to generate new imagesSolve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence modelsUnderstand DL techniques, such as meta-learning and graph neural networksWho this book is for This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.

Book Machine Learning

    Book Details:
  • Author : Samuel Hack
  • Publisher :
  • Release : 2021-01-07
  • ISBN : 9781801146678
  • Pages : 638 pages

Download or read book Machine Learning written by Samuel Hack and published by . This book was released on 2021-01-07 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the world of Python and Machine Learning with this incredible 4-in-1 bundle. Are you interested in becoming a Python pro?Do you want to learn more about the incredible world of machine learning, and what it can do for you? Then keep reading. Created with the beginner in mind, this powerful bundle delves into the fundamentals behind Python and Machine Learning, from basic code and mathematical formulas to complex neural networks and ensemble modeling. Inside, you'll discover everything you need to know to get started with Python and Machine Learning, and begin your journey to success! In book one - MACHINE LEARNING FOR BEGINNERS, you'll learn: What is Artificial Intelligence Really, and Why is it So Powerful? Choosing the Right Kind of Machine Learning Model for You An Introduction to Statistics Reinforcement Learning and Ensemble Modeling "Random Forests" and Decision Trees In book two - MACHINE LEARNING MATHEMATICS, you will: Learn the Fundamental Concepts of Machine Learning Algorithms Understand The Four Fundamental Types of Machine Learning Algorithm Master the Concept of "Statistical Learning" Learn Everything You Need to Know about Neural Networks and Data Pipelines Master the Concept of "General Setting of Learning" In book three - LEARNING PYTHON, you'll discover: How to Install, Run, and Understand Python on Any Operating System A Comprehensive Introduction to Python Python Basics and Writing Code Writing Loops, Conditional Statements, Exceptions and More Python Expressions and The Beauty of Inheritances And in book four - PYTHON MACHINE LEARNING, you will: Learn the Fundamentals of Machine Learning Master the Nuances of 12 of the Most Popular and Widely-Used Machine Learning Algorithms Become Familiar with Data Science Technology Dive Into the Functioning of Scikit-Learn Library and Develop Machine Learning Models Uncover the Secrets of the Most Critical Aspect of Developing a Machine Learning Model - Data Pre-Processing and Training/Testing Subsets Whether you're a complete beginner or a programmer looking to improve your skillset, this bundle is your all-in-one solution to mastering the world of Python and Machine Learning. So don't wait - it's never been easier to learn. Buy Now to Become a Master of Python and Machine Learning Today!

Book Hands On Reinforcement Learning with Python

Download or read book Hands On Reinforcement Learning with Python written by Sudharsan Ravichandiran and published by Packt Publishing Ltd. This book was released on 2018-06-28 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.

Book Hands On Machine Learning with Scikit Learn  Keras  and TensorFlow

Download or read book Hands On Machine Learning with Scikit Learn Keras and TensorFlow written by Aurélien Géron and published by "O'Reilly Media, Inc.". This book was released on 2019-09-05 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Book Hands On Python Deep Learning for the Web

Download or read book Hands On Python Deep Learning for the Web written by Anubhav Singh and published by Packt Publishing Ltd. This book was released on 2020-05-15 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use the power of deep learning with Python to build and deploy intelligent web applications Key FeaturesCreate next-generation intelligent web applications using Python libraries such as Flask and DjangoImplement deep learning algorithms and techniques for performing smart web automationIntegrate neural network architectures to create powerful full-stack web applicationsBook Description When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices. What you will learnExplore deep learning models and implement them in your browserDesign a smart web-based client using Django and FlaskWork with different Python-based APIs for performing deep learning tasksImplement popular neural network models with TensorFlow.jsDesign and build deep web services on the cloud using deep learningGet familiar with the standard workflow of taking deep learning models into productionWho this book is for This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you’re a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.

Book Deep Learning with Python

    Book Details:
  • Author : Mark Graph
  • Publisher :
  • Release : 2019-10-15
  • ISBN : 9781699947357
  • Pages : 235 pages

Download or read book Deep Learning with Python written by Mark Graph and published by . This book was released on 2019-10-15 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book doesn't have any superpowers or magic formula to help you master the art of neural networks and deep learning. We believe that such learning is all in your heart. You need to learn a concept by heart and then brainstorm its different possibilities. I don't claim that after reading this book you will become an expert in Python and Deep Learning Neural Networks. Instead, you will, for sure, have a basic understanding of deep learning and its implications and real-life applications. Most of the time, what confuses us is the application of a certain thing in our lives. Once we know that, we can relate the subject to that particular thing and learn. An interesting thing is that neural networks also learn the same way. This makes it easier to learn about them when we know the basics. Let's take a look at what this book has to offer: ● The basics of Python including data types, operators and numbers. ● Advanced programming in Python with Python expressions, types and much more. ● A comprehensive overview of deep learning and its link to the smart systems that we are now building. ● An overview of how artificial neural networks work in real life. ● An overview of PyTorch. ● An overview of TensorFlow. ● An overview of Keras. ● How to create a convolutional neural network. ● A comprehensive understanding of deep learning applications and its ethical implications, including in the present and future. This book offers you the basic knowledge about Python and Deep Learning Neural Networks that you will need to lay the foundation for future studies. This book will start you on the road to mastering the art of deep learning neural networks. When I say that I don't have the magic formula to make you learn, I mean it. My point is that you should learn Python coding and Python libraries to build neural networks by practicing hard. The more you practice, the better it is for your skills. It is only after thorough and in depth practice that you will be able to create your own programs. Unlike other books, I don't claim that this book will make you a master of deep learning after a single read. That's not realistic, in fact, it's even a bit absurd. What I claim is that you will definitely learn about the basics. The rest is practice. The more you practice the better you code.

Book Mastering Deep Learning

Download or read book Mastering Deep Learning written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the Power of Neural Networks for Intelligent Solutions In the landscape of artificial intelligence and machine learning, deep learning stands as a revolutionary force that is shaping the future of technology. "Mastering Deep Learning" is your ultimate guide to comprehending and harnessing the potential of deep neural networks, empowering you to create intelligent solutions that drive innovation. About the Book: As the capabilities of technology expand, deep learning emerges as a transformative approach that unlocks the potential of artificial intelligence. "Mastering Deep Learning" offers a comprehensive exploration of this cutting-edge field—an indispensable toolkit for data scientists, engineers, and enthusiasts. This book caters to both beginners and experienced learners aiming to excel in deep learning concepts, algorithms, and applications. Key Features: Deep Learning Fundamentals: Begin by understanding the core principles of deep learning. Learn about neural networks, activation functions, and backpropagation—the building blocks of the subject. Deep Neural Architectures: Dive into the world of deep neural architectures. Explore techniques for building and designing different types of neural networks, including feedforward, convolutional, and recurrent networks. Training and Optimization: Grasp the art of training deep neural networks. Understand techniques for weight initialization, gradient descent, and optimization algorithms to ensure efficient learning. Natural Language Processing: Explore deep learning applications in natural language processing. Learn how to process and understand text, sentiment analysis, and language generation. Computer Vision: Understand the significance of deep learning in computer vision. Explore techniques for image classification, object detection, and image generation. Reinforcement Learning: Delve into the realm of reinforcement learning. Explore techniques for training agents to interact with environments and make intelligent decisions. Transfer Learning and Pretrained Models: Grasp the power of transfer learning. Learn how to leverage pretrained models and adapt them to new tasks. Real-World Applications: Gain insights into how deep learning is applied across industries. From healthcare to finance, discover the diverse applications of deep neural networks. Why This Book Matters: In an era of rapid technological advancement, mastering deep learning offers a competitive edge. "Mastering Deep Learning" empowers data scientists, engineers, and technology enthusiasts to leverage these cutting-edge concepts, enabling them to create intelligent solutions that drive innovation and redefine possibilities. Unleash the Future of AI: In the landscape of artificial intelligence, deep learning is reshaping technology and innovation. "Mastering Deep Learning" equips you with the knowledge needed to leverage deep neural networks, enabling you to create intelligent solutions that push the boundaries of possibilities. Whether you're a seasoned practitioner or new to the world of deep learning, this book will guide you in building a solid foundation for effective AI-driven solutions. Your journey to mastering deep learning starts here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com