Download or read book Mastering Data Analysis with R written by Gergely Daroczi and published by Packt Publishing Ltd. This book was released on 2015-09-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.
Download or read book MASTERING DATA MINING THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT written by Michael J. A. Berry and published by . This book was released on 2008-09-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.
Download or read book Mastering Data Modeling written by John Carlis and published by Addison-Wesley Professional. This book was released on 2000-11-10 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.
Download or read book Master Data Management in Practice written by Dalton Cervo and published by John Wiley & Sons. This book was released on 2011-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, authors Dalton Cervo and Mark Allen show you how to implement Master Data Management (MDM) within your business model to create a more quality controlled approach. Focusing on techniques that can improve data quality management, lower data maintenance costs, reduce corporate and compliance risks, and drive increased efficiency in customer data management practices, the book will guide you in successfully managing and maintaining your customer master data. You'll find the expert guidance you need, complete with tables, graphs, and charts, in planning, implementing, and managing MDM.
Download or read book Enterprise Master Data Management written by Allen Dreibelbis and published by Pearson Education. This book was released on 2008-06-05 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
Download or read book Master Data Management written by David Loshin and published by Morgan Kaufmann. This book was released on 2010-07-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to "master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
Download or read book Mastering Data Storage and Processing written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the Power of Effective Data Storage and Processing with "Mastering Data Storage and Processing" In today's data-driven world, the ability to store, manage, and process data effectively is the cornerstone of success. "Mastering Data Storage and Processing" is your definitive guide to mastering the art of seamlessly managing and processing data for optimal performance and insights. Whether you're an experienced data professional or a newcomer to the realm of data management, this book equips you with the knowledge and skills needed to navigate the intricacies of modern data storage and processing. About the Book: "Mastering Data Storage and Processing" takes you on an enlightening journey through the intricacies of data storage and processing, from foundational concepts to advanced techniques. From storage systems to data pipelines, this book covers it all. Each chapter is meticulously designed to provide both a deep understanding of the concepts and practical applications in real-world scenarios. Key Features: · Foundational Principles: Build a strong foundation by understanding the core principles of data storage technologies, file systems, and data processing paradigms. · Storage Systems: Explore a range of data storage systems, from relational databases and NoSQL databases to cloud-based storage solutions, understanding their strengths and applications. · Data Modeling and Design: Learn how to design effective data schemas, optimize storage structures, and establish relationships for efficient data organization. · Data Processing Paradigms: Dive into various data processing paradigms, including batch processing, stream processing, and real-time analytics, for extracting valuable insights. · Big Data Technologies: Master the essentials of big data technologies such as Hadoop, Spark, and distributed computing frameworks for processing massive datasets. · Data Pipelines: Understand the design and implementation of data pipelines for data ingestion, transformation, and loading, ensuring seamless data flow. · Scalability and Performance: Discover strategies for optimizing data storage and processing systems for scalability, fault tolerance, and high performance. · Real-World Use Cases: Gain insights from real-world examples across industries, from finance and healthcare to e-commerce and beyond. · Data Security and Privacy: Explore best practices for data security, encryption, access control, and compliance to protect sensitive information. Who This Book Is For: "Mastering Data Storage and Processing" is designed for data engineers, developers, analysts, and anyone passionate about effective data management. Whether you're aiming to enhance your skills or embark on a journey toward becoming a data management expert, this book provides the insights and tools to navigate the complexities of data storage and processing. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
Download or read book Data Processing written by John E. Bingham and published by . This book was released on 1989 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Processing is a self-contained and up-to-date book, ideal for the relevant business and accounting courses or anyone in business who wishes to improve existing knowledge and skills. The book teaches all aspects of data processing, including an introduction to DP.
Download or read book Data Processing Handbook for Complex Biological Data Sources written by Gauri Misra and published by Academic Press. This book was released on 2019-03-23 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing
Download or read book Mastering Your Data written by Andy Graham and published by Koios Associates Ltd. This book was released on 2015-01-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is my latest book on Data Architecture focusing on the subject of MDM (Master Data Management). It is intended to provide a overview of the subject with chapters covering key topics such as: the business case, data privacy, the challenges of global MDM, golden source and authoritative source explanations, the different MDM styles and the record matching process. The back cover text says the following: " Master Data Management (MDM for short) has become a whole industry, within an industry. There are many companies now claiming to be MDM software (or services) providers. Everyone wants a master data project on their CV, and in general it has become hip and trendy to talk about and do. The reality is that MDM is in fact the reincarnation of the problem of how to manage the consistency and integrity of the myriads of data assets that exist across the enterprise. This book provides an understanding of MDM, the business drivers behind it, the various techniques that are critical to its success and gives a good architectural grounding in the subject. It is perfect for anyone embarking on an ‘adventure’ in this problem space." I hope you find this book enjoyable and useful. Andy
Download or read book Mastering Java for Data Science written by Alexey Grigorev and published by Packt Publishing Ltd. This book was released on 2017-04-27 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks. Easy-to-follow illustrations and the running example of building a search engine. Who This Book Is For This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you! What You Will Learn Get a solid understanding of the data processing toolbox available in Java Explore the data science ecosystem available in Java Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images Create your own search engine Get state-of-the-art performance with XGBoost Learn how to build deep neural networks with DeepLearning4j Build applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings. Style and approach This is a practical guide where all the important concepts such as classification, regression, and dimensionality reduction are explained with the help of examples.
Download or read book MASTER DATA MANAGEMENT AND DATA GOVERNANCE 2 E written by Alex Berson and published by McGraw Hill Professional. This book was released on 2010-12-06 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest techniques for building a customer-focused enterprise environment "The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works." -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance
Download or read book Multi Domain Master Data Management written by Mark Allen and published by Morgan Kaufmann. This book was released on 2015-03-21 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data.
Download or read book Mastering Hadoop 3 written by Chanchal Singh and published by Packt Publishing Ltd. This book was released on 2019-02-28 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.
Download or read book Mastering Data Visualization with Microsoft Visio Professional 2016 written by David J Parker and published by Packt Publishing Ltd. This book was released on 2016-05-27 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art of presenting information visually using Microsoft Visio Professional 2016 and Visio Pro for Office365 About This Book A complete guide to data visualization with Microsoft Visio Professional 2016 Visualize information to meet the needs of your business Get the quick way to learn Microsoft Visio 2016 Who This Book Is For This book is aimed at the departmental-level business intelligence professional or Microsoft Office power-user who wants to create data diagrams with Microsoft Visio that can accurately represent business information visually. What You Will Learn Add external data from a variety of data sources Represent information with data graphics Create custom data-like shapes Export data from structured diagrams Present information graphics to non-Visio users Automate visualizations from data Develop custom templates and code for others In Detail Microsoft Visio Professional is a data visualization application that is used by many different market sectors and many different departments to represent information visually, from network infrastructure to organization charts, from process diagrams to office layouts. Starting off with a brief introduction to Visio Professional 2016 and then moving on to data storage, linking data to shapes, and working with SQL Server to create a solid foundation. Then we'll cover topics such as refreshing data, working with geographical data, working with various graphics, and diagrams, and more. Finally, you'll find out how to deploy custom stencils, templates, and code. Style and approach This book has real life examples that will let you explore all the new features of Microsoft Visio 2016 and apply them in your daily life.
Download or read book Mastering Spark with R written by Javier Luraschi and published by "O'Reilly Media, Inc.". This book was released on 2019-10-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Download or read book Practical Time Series Analysis written by Dr. Avishek Pal and published by Packt Publishing Ltd. This book was released on 2017-09-28 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step by Step guide filled with real world practical examples. About This Book Get your first experience with data analysis with one of the most powerful types of analysis—time-series. Find patterns in your data and predict the future pattern based on historical data. Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide Who This Book Is For This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods. What You Will Learn Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project Develop an understanding of loading, exploring, and visualizing time-series data Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series Take advantage of exponential smoothing to tackle noise in time series data Learn how to use auto-regressive models to make predictions using time-series data Build predictive models on time series using techniques based on auto-regressive moving averages Discover recent advancements in deep learning to build accurate forecasting models for time series Gain familiarity with the basics of Python as a powerful yet simple to write programming language In Detail Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python. The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python. The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python. Style and approach This book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.