Download or read book Mastering Data Analysis with R written by Gergely Daroczi and published by Packt Publishing Ltd. This book was released on 2015-09-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.
Download or read book Data Analytics for Beginners written by Paul Kinley and published by . This book was released on 2016-11-03 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA ANALYTICS FOR BEGINNER: IN ORDER TO SUCEED IN TODAYS'Ss FAST PACE BUSINESS ENVIRONEMNT, YOU NEED TO MASTER DATA ANALYTICS. Data Analytics is the most powerful tool to analyze today's business environment and to predict future developments. Is it not the dream of every business owner to know exactly what the customer will buy in 6 months or what the new product hype will look like in your OWN industry? Data Analytics is the tool that will bring you answers to these questions. Here's why Data Analytics for Beginners will bring your business to a complete new level: How you can use data analytics to improve your business How to plan data analysis to know exactly what your target group wants How to implement descriptive analysis You will learn the exact techniques that are required to master Data Analytics Our customer's feedback I am the owner of a home supplies shop with 15 employees and this book improved the sales by 18,5% during the last 3 months. Richard S., Boston. Data Analytics for Beginners was a eye opener for me and my business. With this book I research all of my products on sale and my skills about the market I am in enhanced drastically. I can recommend this book to everyone that is planning to improve the business. Anamda R., Sacramento. During my IT studies this book supported me a lot with anaylsis about future business trends. This book has a easy to understand writing style without any expert language. In other words: every beginner can work with this book right away.Thomas E., Baltimore. Here's what you will get Planning a Study Surveys Experiments Gathering Data How to select useful samples Avoiding Bias in Data Sets Descriptive Analysis Mean Median Mode Variance Standard Deviation Coefficient of Variation Pie Charts How to create Pie Charts in Excel Bar Graphs How to Create Bar Charts in Excel Time Charts and Line Charts How to create a time chart in excel How to create a line chart in excel Histograms How to create a histogram in Excel Scatter Plots How to create a Scatter Chart in Excel Business Intelligence Data Analytics in Business and Industry
Download or read book Creating Value with Data Analytics in Marketing written by Peter C. Verhoef and published by Routledge. This book was released on 2021-11-07 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The key competing texts are practitioner-focused ‘how to’ guides, whilst our book combines rigorous theory with practical insight and examples, with authors from both the academic and business world, making it more adoptable as a student text; Unlike other books on the subject, this has a customer focus and an exploration of how big data can add value to customers as well as organisations; Enables readers to move from "big data" to "big solutions" by demonstrating how to integrate data analytics into specific goals and processes for implementation; Highly successful and well regarded both for students and practitioners
Download or read book Mastering Clojure Data Analysis written by Eric Rochester and published by Packt Publishing Ltd. This book was released on 2014-05-26 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a practical, exampleoriented approach that aims to help you learn how to use Clojure for data analysis quickly and efficiently. This book is great for those who have experience with Clojure and need to use it to perform data analysis. This book will also be hugely beneficial for readers with basic experience in data analysis and statistics.
Download or read book Mastering Spark with R written by Javier Luraschi and published by "O'Reilly Media, Inc.". This book was released on 2019-10-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Download or read book Mastering pandas written by Ashish Kumar and published by Packt Publishing Ltd. This book was released on 2019-10-25 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key FeaturesManipulate and analyze your data expertly using the power of pandasWork with missing data and time series data and become a true pandas expertIncludes expert tips and techniques on making your data analysis tasks easierBook Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learnSpeed up your data analysis by importing data into pandasKeep relevant data points by selecting subsets of your dataCreate a high-quality dataset by cleaning data and fixing missing valuesCompute actionable analytics with grouping and aggregation in pandasMaster time series data analysis in pandasMake powerful reports in pandas using Jupyter notebooksWho this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Head First Data Analysis written by Michael Milton and published by "O'Reilly Media, Inc.". This book was released on 2009-07-24 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide for data managers and analyzers. It shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others.
Download or read book Mastering Data Analysis with Python written by Rajender Kumar and published by Jamba Academy. This book was released on 2023-03-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you tired of feeling like you're stuck in a dead-end job with no room for growth or advancement? Are you ready to take your career to the next level and start making real money? Look no further than "Mastering Data Analysis with Python." This comprehensive guide is designed to teach you the skills you need to become a top-paying data analyst. With a focus on the powerful Python programming language, you'll learn how to collect, clean, and analyze data like a pro. But that's not all - you'll also discover how to use this data to make informed business decisions and drive real results. Key Features: Here's just a taste of what you'll learn in this book: How to use Python's built-in libraries to manipulate and analyze data like a pro Techniques for cleaning and prepping data for analysis Advanced data visualization techniques to help you communicate your findings How to use statistical methods to draw meaningful insights from your data And much more! WHO THIS BOOK IS FOR? Data analysts and scientists who want to learn how to use Python for data analysis Programmers who want to add data analysis skills to their repertoire Anyone interested in exploring and visualizing data using Python Students and professionals looking to improve their data analysis and visualization skills Individuals interested in machine learning and artificial intelligence who need to learn data analysis fundamentals. What other people says: But don't just take our word for it. Here's what some of our readers have had to say: "I've been working as a data analyst for a few years now, but this book taught me so many new techniques that I was able to immediately apply to my job and start making more money." "I've always been interested in data analysis, but I didn't know where to start. This book is the perfect introduction to the field and has helped me land my dream job." "I was able to use the skills I learned in this book to negotiate a raise and make an additional $100,000 per year!" Outcome: Gain proficiency in NumPy, Pandas, and Matplotlib Learn to handle data effectively using Python Develop the skills to perform exploratory data analysis and data visualization Acquire the knowledge to build predictive models and perform statistical analysis Learn to handle large datasets and work with real-world data Master the skills to communicate data insights effectively Gain confidence in using Python for data analysis and visualization Table of Contents 1: Introduction to Data Analysis with Python 2: Getting Started with Python 3: Built-in Data Structures, Functions, and Files 4: Data Wrangling 5: NumPy for Data Analysis 6: Pandas for Data Analysis 7: Descriptive Statistics for Data Analysis 8: Data Exploration 9: Matplotlib for Data visualization 10: Data Visualization 11: Data Analysis in Business A. Additional Resources for Further Learning B. Insider Secrets for Success as A Data Analyst C. Glossary So, what are you waiting for? Don't let your dreams of a high-paying career in data analysis slip away. Get your hands on "Mastering Data Analysis with Python" today and start making real money.
Download or read book Mastering Python Data Analysis written by Magnus Vilhelm Persson and published by Packt Publishing Ltd. This book was released on 2016-06-27 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an expert at using Python for advanced statistical analysis of data using real-world examples About This Book Clean, format, and explore data using graphical and numerical summaries Leverage the IPython environment to efficiently analyze data with Python Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For If you are a competent Python developer who wants to take your data analysis skills to the next level by solving complex problems, then this advanced guide is for you. Familiarity with the basics of applying Python libraries to data sets is assumed. What You Will Learn Read, sort, and map various data into Python and Pandas Recognise patterns so you can understand and explore data Use statistical models to discover patterns in data Review classical statistical inference using Python, Pandas, and SciPy Detect similarities and differences in data with clustering Clean your data to make it useful Work in Jupyter Notebook to produce publication ready figures to be included in reports In Detail Python, a multi-paradigm programming language, has become the language of choice for data scientists for data analysis, visualization, and machine learning. Ever imagined how to become an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? Well, look no further, this is the book you want! Through this comprehensive guide, you will explore data and present results and conclusions from statistical analysis in a meaningful way. You'll be able to quickly and accurately perform the hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. You'll start off by learning about the tools available for data analysis in Python and will then explore the statistical models that are used to identify patterns in data. Gradually, you'll move on to review statistical inference using Python, Pandas, and SciPy. After that, we'll focus on performing regression using computational tools and you'll get to understand the problem of identifying clusters in data in an algorithmic way. Finally, we delve into advanced techniques to quantify cause and effect using Bayesian methods and you'll discover how to use Python's tools for supervised machine learning. Style and approach This book takes a step-by-step approach to reading, processing, and analyzing data in Python using various methods and tools. Rich in examples, each topic connects to real-world examples and retrieves data directly online where possible. With this book, you are given the knowledge and tools to explore any data on your own, encouraging a curiosity befitting all data scientists.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Mastering Python for Data Science written by Samir Madhavan and published by Packt Publishing Ltd. This book was released on 2015-08-31 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.
Download or read book Mastering Power Query in Power BI and Excel written by Reza Rad and published by RADACAD Systems Limited. This book was released on 2021-08-27 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in a structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else come from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may already be familiar with other data preparation and transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Power Query exists in many Microsoft tools and services such as Power BI, Excel, Dataflows, Power Automate, Azure Data Factory, etc. Through the years, this engine became more powerful. These days, we can say this is essential learning for anyone who wants to do data analysis with Microsoft technology to learn Power Query and master it. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book series. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book series is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is compiled into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (already available to be purchased separately) Mastering Power Query in Power BI and Excel (This book) Power Query dataflows (will be published later) This book deeps dive into real-world challenges of data transformation. It starts with combining data sources and continues with aggregations and fuzzy operations. The book covers advanced usage of Power Query in scenarios such as error handling and exception reports, custom functions and parameters, advanced analytics, and some helpful table and list functions. The book continues with some performance tuning tips and it also explains the Power Query formula language (M) and the structure of it and how to use it in practical solutions. Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query.
Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Download or read book Mastering Microsoft Power BI written by Brett Powell and published by Packt Publishing Ltd. This book was released on 2018-03-29 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI.What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is for Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.
Download or read book Mastering Tableau 2021 written by Marleen Meier and published by Packt Publishing Ltd. This book was released on 2021-05-31 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, design, and improve advanced business intelligence solutions using Tableau's latest features, including Tableau Prep Builder, Tableau Hyper, and Tableau Server Key FeaturesMaster new features in Tableau 2021 to solve real-world analytics challengesPerform geo-spatial, time series, and self-service analytics using real-life examplesBuild and publish dashboards and explore storytelling using Python and R integration supportBook Description Tableau is one of the leading business intelligence (BI) tools that can help you solve data analysis challenges. With this book, you will master Tableau's features and offerings in various paradigms of the BI domain. Updated with fresh topics including Quick Level of Detail expressions, the newest Tableau Server features, Einstein Discovery, and more, this book covers essential Tableau concepts and advanced functionalities. Leveraging Tableau Hyper files and using Prep Builder, you'll be able to perform data preparation and handling easily. You'll gear up to perform complex joins, spatial joins, unions, and data blending tasks using practical examples. Next, you'll learn how to execute data densification and further explore expert-level examples to help you with calculations, mapping, and visual design using Tableau extensions. You'll also learn about improving dashboard performance, connecting to Tableau Server and understanding data visualization with examples. Finally, you'll cover advanced use cases such as self-service analysis, time series analysis, and geo-spatial analysis, and connect Tableau to Python and R to implement programming functionalities within it. By the end of this Tableau book, you'll have mastered the advanced offerings of Tableau 2021 and be able to tackle common and advanced challenges in the BI domain. What you will learnGet up to speed with various Tableau componentsMaster data preparation techniques using Tableau Prep BuilderDiscover how to use Tableau to create a PowerPoint-like presentationUnderstand different Tableau visualization techniques and dashboard designsInteract with the Tableau server to understand its architecture and functionalitiesStudy advanced visualizations and dashboard creation techniquesBrush up on powerful self-service analytics, time series analytics, and geo-spatial analyticsWho this book is for This book is designed for business analysts, business intelligence professionals and data analysts who want to master Tableau to solve a range of data science and business intelligence problems. The book is ideal if you have a good understanding of Tableau and want to take your skills to the next level.
Download or read book Mastering Shiny written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2021-04-29 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production