Download or read book Innovative Wastewater Treatment Resource Recovery Technologies Impacts on Energy Economy and Environment written by Juan M. Lema and published by IWA Publishing. This book was released on 2017-06-15 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
Download or read book Integrated and Hybrid Process Technology for Water and Wastewater Treatment written by Abdul Wahab Mohammad and published by Elsevier. This book was released on 2021-08-25 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. - Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment - Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development - Provides future direction of research in sustainable water and wastewater treatment
Download or read book Handbook of Water and Wastewater Treatment Technologies written by Nicholas P Cheremisinoff and published by Butterworth-Heinemann. This book was released on 2002 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Overview of Water and Wastewater; What Filtration Is All About; Chemical Additives that Enhance Filtration; Selecting the Right Filter Media; What Pressure- and Cake-Filtration Are All; Cartridge and Other Filters Worth Mentioning; What Sand Filtration is All About; Sedimentation, Clarification, Flotation, and Membrane Separation Technologies; Ion Exchange and Carbon Adsorption; Water Sterilization Technologies; Treating the Sludge; Glossary; Index.
Download or read book Cost Effective Technologies for Solid Waste and Wastewater Treatment written by Srujana Kathi and published by Elsevier. This book was released on 2021-11-03 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cost-Effective Technologies for Solid Waste and Wastewater Treatment synthesizes methods, case studies, and analyses of various state-of-the-art techniques for removing contaminants from wastewater, solid waste, or sewage and converting or reusing the waste with minimum impact on the environment. Focusing on innovative treatment strategies, as well as recent modifications to conventional processes, the book covers methods for a complex variety of emerging pollutants, including organic matter, chemicals, and micropollutants resulting from developmental and industrial activities.Serving as a practical guide to state-of-the-art methods, Cost-Effective Technologies for Solid Waste and Wastewater Treatment also delivers offers foundational information on the practical design of treatment and reuse systems and explains the treatments in terms of scale, efficiency, and effectiveness. It focuses on cost-effective technologies that are particularly applicable to environmental clean-up, such as bioaugmentation and biostimulation of plastics, activated carbon, phytoremediation, crude oil pollution stress, adsorbents, contaminants of emerging concern, anaerobic digestion, ISCO, biosorption, bioremediation, radioactive contaminants, constructed wetlands, nanoremediation, and rainwater. As such, it is a valuable and practical resource for researchers, students, and managers in the fields of environmental science and engineering, as well as wastewater management, chemical engineering, and biotechnology. - Presents low-cost treatment technologies for both solid waste and wastewater - Analyzes the efficiency and effectiveness of state-of-the-art technologies - Includes methods and case studies for practical application
Download or read book Handbook for Managing Onsite and Clustered decentralized Wastewater Treatment Systems written by and published by DIANE Publishing. This book was released on 2005 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advanced Treatment Technologies for Urban Wastewater Reuse written by Despo Fatta-Kassinos and published by Springer. This book was released on 2016-01-28 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a detailed overview of currently applied and tested wastewater treatment technologies and the integration of advanced processes to remove trace organic contaminants and microorganisms. It discusses the potential of enhanced biological treatment to produce effluent suitable for reuse, new processes for urban wastewater disinfection and the reduction of antibiotic resistant bacteria, as well as the effect of advanced oxidation processes on wastewater microbiome and chemical contaminants. It also presents membrane bioreactors, moving bed bioreactors, light and solar driven technologies, ozonation and immobilised heterogeneous photocatalysis and provides an evaluation of the potential of constructed wetlands integrated with advanced oxidation technologies to produce wastewater safe for reuse. Furthermore, the volume discusses water reuse issues and standards, the status of membrane bioreactors applications, and the treatment of reverse osmosis concentrate for enhanced water recovery during wastewater treatment. Finally, it presents recent developments in potable water reuse and addresses various important issues in this framework, like the proper protection of public health, reliability and monitoring. This volume is of interest to experts, scientists and practitioners from various fields of research, including analytical and environmental chemistry, toxicology and environmental and sanitary engineering, as well as treatment plant operators and policymakers.
Download or read book Nature Based Solutions for Wastewater Treatment written by Katharine Cross and published by IWA Publishing. This book was released on 2021-08-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are 2.4 billion people without improved sanitation and another 2.1 billion with inadequate sanitation (i.e. wastewater drains directly into surface waters), and despite improvements over the past decades, the unsafe management of fecal waste and wastewater continues to present a major risk to public health and the environment (UN, 2016). There is growing interest in low cost sanitation solutions which harness natural systems. However, it can be difficult for wastewater utility managers to understand under what conditions such nature-based solutions (NBS) might be applicable and how best to combine traditional infrastructure, for example an activated sludge treatment plant, with an NBS such as treatment wetlands. There is increasing scientific evidence that treatment systems with designs inspired by nature are highly efficient treatment technologies. The cost-effective design and implementation of ecosystems in wastewater treatment is something that exists and has the potential to be further promoted globally as both a sustainable and practical solution. This book serves as a compilation of technical references, case examples and guidance for applying nature-based solutions for treatment of domestic wastewater, and enables a wide variety of stakeholders to understand the design parameters, removal efficiencies, costs, co-benefits for both people and nature and trade-offs for consideration in their local context. Examples through case studies are from across the globe and provide practical insights into the variety of potentially applicable solutions.
Download or read book Benchmarking of Control Strategies for Wastewater Treatment Plants written by Krist V. Gernaey and published by IWA Publishing. This book was released on 2014-09-15 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena and to the large range of time constants (from a few minutes to several days). The lack of standard evaluation criteria is also a tremendous disadvantage. To really enhance the acceptance of innovative control strategies, such an evaluation needs to be based on a rigorous methodology including a simulation model, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol. This book is a Scientific and Technical Report produced by the IWA Task Group on Benchmarking of Control Strategies for Wastewater Treatment Plants. The goal of the Task Group includes developing models and simulation tools that encompass the most typical unit processes within a wastewater treatment system (primary treatment, activated sludge, sludge treatment, etc.), as well as tools that will enable the evaluation of long-term control strategies and monitoring tasks (i.e. automatic detection of sensor and process faults). Work on these extensions has been carried out by the Task Group during the past five years, and the main results are summarized in Benchmarking of Control Strategies for Wastewater Treatment Plants. Besides a description of the final version of the already well-known Benchmark Simulation Model no. 1 (BSM1), the book includes the Benchmark Simulation Model no. 1 Long-Term (BSM1_LT) – with focus on benchmarking of process monitoring tasks – and the plant-wide Benchmark Simulation Model no. 2 (BSM2). Authors: Krist V. Gernaey, Technical University of Denmark, Lyngby, Denmark, Ulf Jeppsson, Lund University, Sweden, Peter A. Vanrolleghem, Université Laval, Quebec, Canada and John B. Copp, Primodal Inc., Hamilton, Ontario, Canada
Download or read book Source Separation and Decentralization for Wastewater Management written by Tove A. Larsen and published by IWA Publishing. This book was released on 2013-02-01 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Download or read book Industrial Wastewater Treatment Recycling and Reuse written by Vivek V. Ranade and published by Butterworth-Heinemann. This book was released on 2014-07-21 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions
Download or read book Wastewater Irrigation and Health written by Pay Drechsel and published by IWMI. This book was released on 2010 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: First Published in 2009. Routledge is an imprint of Taylor & Francis, an informa company.
Download or read book Waste Management Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2019-12-06 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world’s population continues to grow and economic conditions continue to improve, more solid and liquid waste is being generated by society. Improper disposal methods can not only lead to harmful environmental impacts but can also negatively affect human health. To prevent further harm to the world’s ecosystems, there is a dire need for sustainable waste management practices that will safeguard the environment for future generations. Waste Management: Concepts, Methodologies, Tools, and Applications is a vital reference source that examines the management of different types of wastes and provides relevant theoretical frameworks about new waste management technologies for the control of air, water, and soil pollution. Highlighting a range of topics such as contaminant removal, landfill treatment, and recycling, this multi-volume book is ideally designed for environmental engineers, waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, policymakers, government officials, academicians, researchers, and students.
Download or read book Onsite Wastewater Treatment Systems Manual written by and published by . This book was released on 2002 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.
Download or read book Wastewater Characteristics Treatment and Disposal written by Marcos Von Sperling and published by IWA Publishing. This book was released on 2007-03-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations for the topics that are analysed in more detail in the other books of the series. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilisation Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
Download or read book Wastewater Reuse and Management written by Sanjay K. Sharma and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 50 years the volume of wastewater has grown exponentially as a result of the increasing world population and the expansion of industrial developments. Researchers all over the world have been trying to address this issue suitably in order to fight water scarcity; yet, it is only recently that wastewater recycling has caught their attention as an effective and responsible solution. Wastewater is a resource that can be adequately treated to successfully satisfy most water demands as well as decreasing wastewater discharges and preventing pollution. This book presents the studies of some of the most prestigious international scientists and gathers them in three different sections: Wastewater Management and Reuse, Wastewater Treatment options and Risk Assessment. The result is an insightful analysis of waste water management, its treatments, and the processes that have been studied, optimized and developed so far to sustain our environment. Wastewater Reuse and Management represents a valuable resource to academic researchers, students, institutions, environmentalists, and anyone interested in environmental policies aimed at safeguarding both the quality and the quantity of water.
Download or read book Management of Pulp and Paper Mill Waste written by Pratima Bajpai and published by Springer. This book was released on 2014-11-07 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulp and paper mill industries are always associated with the disposal problem of highly contaminated sludge or bio-solids. The development of innovative systems to maximize recovery of useful materials and/or energy in a sustainable way has become necessary. The management of wastes, in particular of industrial waste, in an economically and environmentally acceptable manner is one of the most critical issues facing modern industry, mainly due to the increased difficulties in properly locating disposal works and complying with even more stringent environmental quality requirements imposed by legislation. This book presents a general Introduction on waste management in the pulp and paper industry and contains topics on the generation of waste in pulp and paper mills, waste composition, methods of sludge pre-treatment, processes and technologies for conversion of pulp and paper mill waste into valuable products, waste reduction techniques employed in the pulp and paper Industry worldwide and future trends.
Download or read book Water Management Challenges in Global Change written by B. Ulanicki and published by CRC Press. This book was released on 2020-11-25 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water Management Challenges in Global Change contains the proceedings of the 9th Computing and Control for the Water Industry (CCWI2007) and the Sustainable Urban Water Management (SUWM2007) conferences. The rationale behind these conferences is to improve the management of urban water systems through the development of computerbased methods. Issues such as economic globalisation, climate changes and water shortages call for a new approach to water systems management, which addresses the relevant technical, social and economic aspects. This collection represents the views of academic and industrial experts from a number of countries, who provide technical solutions to current water management problems and present a vision for addressing the global questions. The themes underlying many of the contributions include energy and material savings, water savings and the integration of different aspects of water management. The papers are grouped into three themes covering water distribution systems, sustainable urban water management and modelling of wastewater treatment plants. The water distribution topics cover asset and information management, planning, monitoring and control, hydraulic modelling of steady state and transients, water quality and treatment, demand and leakage management, optimisation, design and decision support systems, as well as reliability and security of water distribution systems. The sustainable urban water management topics include urban drainage systems, water reuse, social aspects of water management and also selected facets of water resources and irrigation. Computer control of wastewater treatment plants has been seen as less advanced than that of clean water systems. To address this imbalance, this book presents a number of modelling techniques developed specifically for these plants. Water Management Challenges in Global Change will prove to be invaluable to water and environmental engineering researchers and academics; managers, engineers and planners; and postgraduate students.