Download or read book Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN written by Alfonso Nieto-Castanon and published by Hilbert Press. This book was released on 2020-01-31 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook describes methods for processing and analyzing functional connectivity Magnetic Resonance Imaging (fcMRI) data using the CONN toolbox, a popular freely-available functional connectivity analysis software. Content description [excerpt from introduction] The first section (fMRI minimal preprocessing pipeline) describes standard and advanced preprocessing steps in fcMRI. These steps are aimed at correcting or minimizing the influence of well-known factors affecting the quality of functional and anatomical MRI data, including effects arising from subject motion within the scanner, temporal and spatial image distortions due to the sequential nature of the scanning acquisition protocol, and inhomogeneities in the scanner magnetic field, as well as anatomical differences among subjects. Even after these conventional preprocessing steps, the measured blood-oxygen-level-dependent (BOLD) signal often still contains a considerable amount of noise from a combination of physiological effects, outliers, and residual subject-motion factors. If unaccounted for, these factors would introduce very strong and noticeable biases in all functional connectivity measures. The second section (fMRI denoising pipeline) describes standard and advanced denoising procedures in CONN that are used to characterize and remove the effect of these residual non-neural noise sources. Functional connectivity Magnetic Resonance Imaging studies attempt to quantify the level of functional integration across different brain areas. The third section (functional connectivity measures) describes a representative set of functional connectivity measures available in CONN, each focusing on different indicators of functional integration, including seed-based connectivity measures, ROI-to-ROI measures, graph theoretical approaches, network-based measures, and dynamic connectivity measures. Second-level analyses allow researchers to make inferences about properties of groups or populations, by generalizing from the observations of only a subset of subjects in a study. The fourth section (General Linear Model) describes the mathematics behind the General Linear Model (GLM), the approach used in CONN for all second-level analyses of functional connectivity measures. The description includes GLM model definition, parameter estimation, and hypothesis testing framework, as well as several practical examples and general guidelines aimed at helping researchers use this method to answer their specific research questions. The last section (cluster-level inferences) details several approaches implemented in CONN that allow researchers to make meaningful inferences from their second-level analysis results while providing appropriate family-wise error control (FWEC), whether in the context of voxel-based measures, such as when studying properties of seed-based maps across multiple subjects, or in the context of ROI-to-ROI measures, such as when studying properties of ROI-to-ROI connectivity matrices across multiple subjects.
Download or read book Magnetic Resonance Imaging written by Pottumarthi V. Prasad and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts in the use of MRI explain its basic principles and demonstrate its power to understand biological processes with numerous cutting-edge applications. To illustrate its capability to reveal exquisite anatomical detail, the authors discuss MRI applications to developmental biology, mouse phenotyping, and fiber architecture. MRI can also provide information about organ and tissue function based on endogenous cantrast mechanisms. Examples of brain, kidney, and cardiac function are included, as well as applications to neuro and tumor pathophysiology. In addition, the volume demonstrates the use of exogenous contrast material in functional assessment of the lung, noninvasive evaluation of tissue pH, the imaging of metabolic activity or gene expression that occur on a molecular level, and cellular labeling using superparamagnetic iron oxide contrast agents.
Download or read book Introduction to Functional Magnetic Resonance Imaging written by Richard B. Buxton and published by Cambridge University Press. This book was released on 2009-08-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Download or read book Contrast Enhanced Clinical Magnetic Resonance Imaging written by Val M. Runge and published by University Press of Kentucky. This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Magnetic Resonance Imaging written by Marinus T. Vlaardingerbroek and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive survey of the analytical treatment of MRI physics and engineering brings the reader to a position to cope with the problems that arise when applying MRI to medical problems or when (sub)systems or sequences for new applications are designed.
Download or read book Magnetic Resonance Imaging written by Robert W. Brown and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Download or read book Quantitative Magnetic Resonance Imaging written by Nicole Seiberlich and published by Academic Press. This book was released on 2020-11-18 with total page 1094 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Download or read book Magnetic Resonance Imaging written by Perry Sprawls and published by Medical Physics Publishing Corporation. This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Magnetic Resonance Imaging written by Stewart C. Bushong and published by Elsevier Health Sciences. This book was released on 2003-01-01 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dette er en grundlæggende lærebog om konventionel MRI samt billedteknik. Den begynder med et overblik over elektricitet og magnetisme, herefter gives en dybtgående forklaring på hvordan MRI fungerer og her diskuteres de seneste metoder i radiografisk billedtagning, patientsikkerhed m.v.
Download or read book When I m 64 written by National Research Council and published by National Academies Press. This book was released on 2006-02-13 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: By 2030 there will be about 70 million people in the United States who are older than 64. Approximately 26 percent of these will be racial and ethnic minorities. Overall, the older population will be more diverse and better educated than their earlier cohorts. The range of late-life outcomes is very dramatic with old age being a significantly different experience for financially secure and well-educated people than for poor and uneducated people. The early mission of behavioral science research focused on identifying problems of older adults, such as isolation, caregiving, and dementia. Today, the field of gerontology is more interdisciplinary. When I'm 64 examines how individual and social behavior play a role in understanding diverse outcomes in old age. It also explores the implications of an aging workforce on the economy. The book recommends that the National Institute on Aging focus its research support in social, personality, and life-span psychology in four areas: motivation and behavioral change; socioemotional influences on decision-making; the influence of social engagement on cognition; and the effects of stereotypes on self and others. When I'm 64 is a useful resource for policymakers, researchers and medical professionals.
Download or read book Handbook of MRI Pulse Sequences written by Matt A. Bernstein and published by Elsevier. This book was released on 2004-09-21 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems
Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Download or read book X Nuclei Magnetic Resonance Imaging written by Guillaume Madelin and published by CRC Press. This book was released on 2022-03-15 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standard magnetic resonance imaging (MRI) is a prominent clinical imaging modality used to diagnose and study diseases in vivo. It is principally based on the detection of the nuclei of hydrogen atoms (the proton; symbol 1H) in water molecules in tissues. X-nuclei MRI (also called non-proton MRI) is based on the detection of the nuclei of other atoms (X-nuclei) in the body, such as sodium (23Na), phosphorus (31P), chlorine (35Cl), potassium (39K), deuterium (2H), oxygen (17O), lithium (7Li), and fluorine (19F) using modified software and hardware. X-nuclei MRI can provide fundamental, new metabolic information related to cellular energetic metabolism and ion homeostasis in tissues that cannot be assessed using standard hydrogen MRI. This book is an introduction to the techniques and biomedical applications of X-nuclei MRI. It describes the theoretical and experimental basis of X-nuclei MRI, the limitations of this technique, and its potential biomedical applications for the diagnosis and prognosis of many disorders or for quantitative monitoring of therapies in a wide range of diseases. The book is divided into four parts. Part I includes a general description of X-nuclei nuclear magnetic resonance physics and imaging. Part II deals with the MRI of endogenous nuclei such as 23Na, 31P, 35Cl, and 39K; Part III, the MRI of endogenous/exogenous nuclei such as 2H and 17O; and Part IV, the MRI of exogenous nuclei such as 7Li and 19F. The book is illustrated throughout with many representative figures and includes references and reading suggestions in each section. It is the first book to introduce X-nuclei MRI to researchers, clinicians, students, and general readers who are interested in the development of imaging methods for assessing new metabolic information in tissues in vivo in order to diagnose diseases, improve prognosis, or measure the efficiency of therapies in a timely and quantitative manner. It is an ideal starting point for a clinical or scientific research project in non-proton MRI techniques.
Download or read book fMRI Neurofeedback written by Michelle Hampson and published by Academic Press. This book was released on 2021-10-09 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: fMRI Neurofeedback provides a perspective on how the field of functional magnetic resonance imaging (fMRI) neurofeedback has evolved, an introduction to state-of-the-art methods used for fMRI neurofeedback, a review of published neuroscientific and clinical applications, and a discussion of relevant ethical considerations. It gives a view of the ongoing research challenges throughout and provides guidance for researchers new to the field on the practical implementation and design of fMRI neurofeedback protocols. This book is designed to be accessible to all scientists and clinicians interested in conducting fMRI neurofeedback research, addressing the variety of different knowledge gaps that readers may have given their varied backgrounds and avoiding field-specific jargon. The book, therefore, will be suitable for engineers, computer scientists, neuroscientists, psychologists, and physicians working in fMRI neurofeedback. - Provides a reference on fMRI neurofeedback covering history, methods, mechanisms, clinical applications, and basic research, as well as ethical considerations - Offers contributions from international experts—leading research groups are represented, including from Europe, Japan, Israel, and the United States - Includes coverage of data analytic methods, study design, neuroscience mechanisms, and clinical considerations - Presents a perspective on future translational development
Download or read book Electromagnetics in Magnetic Resonance Imaging written by Christopher M. Collins and published by Morgan & Claypool Publishers. This book was released on 2016-03-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.
Download or read book Functional MRI written by Scott H. Faro and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional magnetic resonance imaging (fMRI) measures quick, tiny metabolic changes that take place in the brain, providing the most sensitive method currently available for identifying, investigating, and monitoring brain tumors, stroke, and chronic disorders of the nervous system like multiple sclerosis, and brain abnormalities related to dementia or seizures. This overview explores experimental research design, outlines challenges and limitations of fMRI, provides a detailed neuroanatomic atlas, and describes clinical applications of fMRI in cognitive, sensory, motor, and pharmacological cases, translating research into clinical application.
Download or read book Neuroimaging and Neurophysiology in Psychiatry written by David Linden and published by Oxford University Press. This book was released on 2016 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuroimaging and Neurophysiology in Psychiatry is an invaluable guide through the methods and applications of neuroimaging and neurophysiology.