EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Magnetic Components for Power Electronics

Download or read book Magnetic Components for Power Electronics written by Alex Goldman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Components for Power Electronics concerns the important considerations necessary in the choice of the optimum magnetic component for power electronic applications. These include the topology of the converter circuit, the core material, shape, size and others such as cost and potential component suppliers. These are all important for the design engineer due to the emergence of new materials, changes in supplier management and the examples of several component choices. Suppliers using this volume will also understand the needs of designers. Highlights include: Emphasis on recently introduced new ferrite materials, such as those operating at megahertz frequencies and under higher DC drive conditions; Discussion of amorphous and nanocrystalline metal materials; New technologies such as resonance converters, power factors correction (PFC) and soft switching; Catalog information from over 40 magnetic component suppliers; Examples of methods of component choice for ferrites, amorphous nanocrystalline materials; Information on suppliers management changes such as those occurring at Siemens, Philips, Thomson and Allied-Signal; Attention to the increasingly important concerns about EMI. This book should be especially helpful for power electronic circuit designers, technical executives, and material science engineers involved with power electronic components.

Book Magnetic Components for Power Electronics

Download or read book Magnetic Components for Power Electronics written by J. F. Jiang and published by . This book was released on 2018-04 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Frequency Magnetic Components

Download or read book High Frequency Magnetic Components written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.

Book Inductors and Transformers for Power Electronics

Download or read book Inductors and Transformers for Power Electronics written by Vencislav Cekov Valchev and published by CRC Press. This book was released on 2018-10-03 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.

Book Investigation on Performance Advantage of Functionally Integrated Magnetic Components in Decentralised Power Electronic Applications

Download or read book Investigation on Performance Advantage of Functionally Integrated Magnetic Components in Decentralised Power Electronic Applications written by Kleeb, Thiemo and published by kassel university press GmbH. This book was released on 2017 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The functional integration of magnetic components is a known technique in order to enable high power densities for power electronic converters. Magnetic components are mandatory in many power electronic converters and many topologies demand more than one magnetic component. Therefore, the functional integration of magnetic components allows realising several magnetic functions within one component. This technique promises lower total size, losses and costs without switching frequency increase. There are several examples in the literature for coupled inductors, common-differential-mode chokes or transformer-inductor components. One centralised question of this work is to explore the performance advantage of functionally integrated magnetic components in comparison to discrete components. Many applications allow the introduction of simple magnetic structures and standard cores or simple modifications of these (flux bypasses) in order to enable the required component behaviour. The design guidelines introduced in this work enable the design of functional integrated magnetic components with limited effort and, therefore, the application of components which enable superior performance regarding size and power loss for the applications.

Book Transformers and Inductors for Power Electronics

Download or read book Transformers and Inductors for Power Electronics written by W.G. Hurley and published by John Wiley & Sons. This book was released on 2013-04-29 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.

Book Design Of Magnetic Components For Switched Mode Power Converters

Download or read book Design Of Magnetic Components For Switched Mode Power Converters written by Z Umanand and published by . This book was released on 1992-12-01 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents A Systematic Approach To The Design Of Transformers Used In Switched Mode Power Converters (Smpcs). Various Design Aspects And Many Practical Examples Are Covered In The Book. The Design Techniques Illustrated In The Book Have Been Tested At Cedt Over The Past Several Years.The Book Contains A Mathematical Analysis Of The Various Transformer Topologies Encountered In Switched Mode Power Converters. Design Of Inductors And Current Transformers Are Also Treated In Detail.Included Also Are The Various Core Materials And Types That Are Commonly Used In Smpcs. This Book Also Introduces The Reader To Computer Aided Design Of Transformers.The Book Would Be Of Immense Use To Design Engineers In The Electronic/Electrical Industry, Senior Undergraduate And Graduate Students And Faculty Of Electronic And Electrical Engineering.

Book Electromagnetic Compatibility in Power Electronics

Download or read book Electromagnetic Compatibility in Power Electronics written by François Costa and published by John Wiley & Sons. This book was released on 2014-01-17 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

Book Electromagnetic Modelling of Power Electronic Converters

Download or read book Electromagnetic Modelling of Power Electronic Converters written by J.A. Ferreira and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of the personal computer has, without doubt, permanently altered our life style in a myriad of ways. The "brain" of the personal computer is the microprocessor (together with RAM and ROM) which makes the decisions needed for the computer to perform in the desired manner. The microprocessor continues to evolve as increasingly complex tasks are required. While not sharing the limelight of the microprocessor, the "heart" of the personal computer, namely the power supply, is equally important since without the necessary source of power the microprocessor would be a useless piece of silicon. The power supply of twenty years ago was much different than its modem day equivalent. At the dawn of the personal computer era in the late 1970s, de power was obtained from a simple diode bridge. However, the need for smooth, regulated DC at low voltage required at the same time both a bulky input transformer and a large dc side ftlter. Those computer fans present at the birth of this industry can remember the large boxes housing our Altair, Cromemco and Northstar computers which was made necessary largely because of the huge power supply. It is not well appreciated but certainly true that the huge sucess of the Apple II computer in those days was due, at least in part, to the relatively slim proftle of the machine. This sleek appearance was largely due to the adoption of the then new and unproven switched mode power supply.

Book Power Magnetic Devices

Download or read book Power Magnetic Devices written by Scott D. Sudhoff and published by John Wiley & Sons. This book was released on 2021-12-02 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Magnetic Devices Discover a cutting-edge discussion of the design process for power magnetic devices In the newly revised second edition of Power Magnetic Devices: A Multi-Objective Design Approach, accomplished engineer and author Dr. Scott D. Sudhoff delivers a thorough exploration of the design principles of power magnetic devices such as inductors, transformers, and rotating electric machinery using a systematic and consistent framework. The book includes new chapters on converter and inverter magnetic components (including three-phase and common-mode inductors) and elaborates on characteristics of power electronics that are required knowledge in magnetics. New chapters on parasitic capacitance and finite element analysis have also been incorporated into the new edition. The work further includes: A thorough introduction to evolutionary computing-based optimization and magnetic analysis techniques Discussions of force and torque production, electromagnet design, and rotating electric machine design Full chapters on high-frequency effects such as skin- and proximity-effect losses, core losses and their characterization, thermal analysis, and parasitic capacitance Treatments of dc-dc converter design, as well as three-phase and common-mode inductor design for inverters An extensive open-source MATLAB code base, PowerPoint slides, and a solutions manual Perfect for practicing power engineers and designers, Power Magnetic Devices will serve as an excellent textbook for advanced undergraduate and graduate courses in electromechanical and electromagnetic design.

Book Modeling and Python Simulation of Magnetics for Power Electronics Applications

Download or read book Modeling and Python Simulation of Magnetics for Power Electronics Applications written by Shivkumar V. Iyer and published by Springer Nature. This book was released on 2022-06-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the role of magnetism in electrical engineering, starting from the most basic laws of physics, converted into simulation models such that electrical engineering students can learn by example and practice. The author demystifies a topic that many electrical engineers take for granted, providing readers the tools to be able to understand how any magnetic component works. He describes magnetic components like inductors and transformers in simple understandable language. Mathematical equations related to the basic laws of physics are described in detail along with the physical significance of the equations. Every application is supported by a simulation. All simulations are performed using free and open source software based on Python making the material in this book universally accessible.

Book  Microelectromechanical Systems  Toroidal Magnetics for Integrated Power Electronics

Download or read book Microelectromechanical Systems Toroidal Magnetics for Integrated Power Electronics written by Mohammad Araghchini and published by . This book was released on 2013 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronics represent a key technology for improving the functionality and performance, and reducing the energy consumption of many systems. However, the size, cost, and performance constraints of conventional power electronics currently limit their use. This is especially true in relatively high-voltage, low-power applications such as off-line power supplies, light-emitting diode (LED) drivers, converters and inverters for photovoltaic panels, and battery interface converters; a LED driver application serves as a motivation example throughout the thesis. Advances in the miniaturization and integration of energy-conversion circuitry in this voltage and power range would have a tremendous impact on many such applications. Magnetic components are often the largest and most expensive components in power electronic circuits and are responsible for a large portion of the power loss. As operating frequencies are increased, the physical size of the passives can, in theory, be reduced while maintaining or improving efficiency. Realizing this reduction in size and the simultaneous improvement in efficiency and power density of power electronic circuits requires improvements in magnetics technology. This thesis focuses on the challenge of improving magnetics through the analysis, optimization, and design of air-core toroidal inductors for integration into high-efficiency, high-frequency power electronic circuits. The first part of the thesis presents the derivation of models for stored energy, resistance and parasitic capacitance of microfabricated toroidal inductors developed for use in integrated power electronics. The models are then reduced to a sinusoidal-steady-state equivalent-circuit model. Two types of toroidal MEMS inductors are considered: in-silicon inductors (with or without silicon core) and in-insulator inductors. These inductors have low profiles and a single-layer winding fabricated via high-aspect-ratio molding and electroplating. Such inductors inevitably have a significant gap between winding turns. This makes the equivalent resistance more difficult to model. The low profile increases the significance of energy stored in the winding which, together with the winding gap, makes the equivalent inductance more difficult to model as well. The models presented in this thesis account for these effects. In the case of in-silicon inductors, magnetically and electrically driven losses in different regions of silicon are modeled analytically as well. The second part of the thesis focuses on the optimized design of microfabricated toroidal inductors for a LED driver. The models developed in the first part of the thesis allow optimization of inductor designs based on objectives such as minimizing substrate area, maximizing efficiency, and simplifying the fabrication process by maximizing minimum feature size. Because the magnetics size and loss depend strongly on the driver design parameters, and the driver performance depends strongly on the inductance value and loss, the simultaneous optimization of driver components and magnetics parameters is used in the design process. The use of computationally efficient models for both magnetics and other circuit components permits numerical optimization using the general co-optimization approach. Finally, a multi-dimensional Pareto-optimal filtering is applied to reduce the feasible design set to those on the multi-objective optimality frontier. For the case of LED drivers, the current state of the art efficiencies range from 65% to 90%. The co-optimization process results in efficiencies greater than 90% while reducing the size of the LED driver by 10 to 100 times compared to the commercially available LED drivers. This is a significant improvement in both the efficiency and the size of the LED drivers. In the resulting designs, the magnetics are no longer the largest part of the circuit. In the third part of the thesis several numerical and experimental tests are presented. The models developed in this thesis, are verified against results from 2D FEA, 3D FEA, direct measurement of MEMS fabricated devices (for both in-insulator devices for flip-chip bonding and in-silicon devices for direct integration), and in-circuit experimentation of the fabricated devices. These tests show that the equivalent-circuit models presented in this thesis have greater accuracy than existing models. The results also show that these models are good enough to support the LED driver optimization.

Book High Frequency Magnetic Components

Download or read book High Frequency Magnetic Components written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2013-11-25 with total page 978 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (such as skin and proximity effects), high-frequency magnetic materials, core saturation, core losses, complex permeability, high-frequency winding resistance, winding power losses, optimization of winding conductors, integrated inductors and transformers, PCB inductors, self-capacitances, self-resonant frequency, core utilization factor area product method, and design techniques and procedures of power inductors and transformers. These components are commonly used in modern power conversion applications. The material in this book has been class-tested over many years in the author’s own courses at Wright State University, which have a high enrolment of about a hundred graduate students per term. The book presents the growing area of magnetic component research in a textbook form, covering the foundations for analysing and designing magnetic devices specifically at high-frequencies. Integrated inductors are described, and the Self-capacitance of inductors and transformers is examined. This new edition adds information on the optimization of magnetic components (Chapter 5). Chapter 2 has been expanded to provide better coverage of core losses and complex permeability, and Chapter 9 has more in-depth coverage of self-capacitances and self-resonant frequency of inductors. There is a more rigorous treatment of many concepts in all chapters. Updated end-of-chapter problems aid the readers’ learning process, with an online solutions manual available for use in the classroom. Provides physics-based descriptions and models of discrete inductors and transformers as well as integrated magnetic devices New coverage on the optimization of magnetic devices, updated information on core losses and complex permeability, and more in-depth coverage of self-capacitances and self-resonant frequency of inductors Many new design examples and end-of-chapter problems for the reader to test their learning Presents the most up-to-date and important references in the field Updated solutions manual, now available through a companion website An up to date resource for Post-graduates and professors working in electrical and computer engineering. Research students in power electronics. Practising design engineers of power electronics circuits and RF (radio-frequency) power amplifiers, senior undergraduates in electrical and computer engineering, and R & D staff.

Book High Frequency Magnetic Components

Download or read book High Frequency Magnetic Components written by Dr. Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2009-11-02 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.

Book Microfabrication of Magnetic Components for High Frequency Power Conversion

Download or read book Microfabrication of Magnetic Components for High Frequency Power Conversion written by Charles Roger Sullivan and published by . This book was released on 1996 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book In Board magnetic Devices

Download or read book In Board magnetic Devices written by Yi Zhang (Ph.D.) and published by . This book was released on 2003 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Inductors and Transformers for Power Electronics

Download or read book Inductors and Transformers for Power Electronics written by Vencislav Cekov Valchev and published by CRC Press. This book was released on 2018-10-03 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.