EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Machine Translation

Download or read book Neural Machine Translation written by Philipp Koehn and published by Cambridge University Press. This book was released on 2020-06-18 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.

Book Machine Translation

    Book Details:
  • Author : Thierry Poibeau
  • Publisher : MIT Press
  • Release : 2017-09-15
  • ISBN : 0262534215
  • Pages : 298 pages

Download or read book Machine Translation written by Thierry Poibeau and published by MIT Press. This book was released on 2017-09-15 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, nontechnical overview of the development of machine translation, including the different approaches, evaluation issues, and major players in the industry. The dream of a universal translation device goes back many decades, long before Douglas Adams's fictional Babel fish provided this service in The Hitchhiker's Guide to the Galaxy. Since the advent of computers, research has focused on the design of digital machine translation tools—computer programs capable of automatically translating a text from a source language to a target language. This has become one of the most fundamental tasks of artificial intelligence. This volume in the MIT Press Essential Knowledge series offers a concise, nontechnical overview of the development of machine translation, including the different approaches, evaluation issues, and market potential. The main approaches are presented from a largely historical perspective and in an intuitive manner, allowing the reader to understand the main principles without knowing the mathematical details. The book begins by discussing problems that must be solved during the development of a machine translation system and offering a brief overview of the evolution of the field. It then takes up the history of machine translation in more detail, describing its pre-digital beginnings, rule-based approaches, the 1966 ALPAC (Automatic Language Processing Advisory Committee) report and its consequences, the advent of parallel corpora, the example-based paradigm, the statistical paradigm, the segment-based approach, the introduction of more linguistic knowledge into the systems, and the latest approaches based on deep learning. Finally, it considers evaluation challenges and the commercial status of the field, including activities by such major players as Google and Systran.

Book Machine Learning in Translation Corpora Processing

Download or read book Machine Learning in Translation Corpora Processing written by Krzysztof Wolk and published by CRC Press. This book was released on 2019-02-25 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews ways to improve statistical machine speech translation between Polish and English. Research has been conducted mostly on dictionary-based, rule-based, and syntax-based, machine translation techniques. Most popular methodologies and tools are not well-suited for the Polish language and therefore require adaptation, and language resources are lacking in parallel and monolingual data. The main objective of this volume to develop an automatic and robust Polish-to-English translation system to meet specific translation requirements and to develop bilingual textual resources by mining comparable corpora.

Book Statistical Machine Translation

Download or read book Statistical Machine Translation written by Philipp Koehn and published by Cambridge University Press. This book was released on 2010 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dream of automatic language translation is now closer thanks to recent advances in the techniques that underpin statistical machine translation. This class-tested textbook from an active researcher in the field, provides a clear and careful introduction to the latest methods and explains how to build machine translation systems for any two languages. It introduces the subject's building blocks from linguistics and probability, then covers the major models for machine translation: word-based, phrase-based, and tree-based, as well as machine translation evaluation, language modeling, discriminative training and advanced methods to integrate linguistic annotation. The book also reports the latest research, presents the major outstanding challenges, and enables novices as well as experienced researchers to make novel contributions to this exciting area. Ideal for students at undergraduate and graduate level, or for anyone interested in the latest developments in machine translation.

Book Machine Translation and Transliteration involving Related  Low resource Languages

Download or read book Machine Translation and Transliteration involving Related Low resource Languages written by Anoop Kunchukuttan and published by CRC Press. This book was released on 2021-09-08 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.

Book Natural Language Processing

Download or read book Natural Language Processing written by Yue Zhang and published by Cambridge University Press. This book was released on 2021-01-07 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.

Book Deep Learning for Natural Language Processing

Download or read book Deep Learning for Natural Language Processing written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-11-21 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.

Book Analysing English Arabic Machine Translation

Download or read book Analysing English Arabic Machine Translation written by Zakaryia Almahasees and published by Routledge. This book was released on 2021-11-30 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Translation (MT) has become widely used throughout the world as a medium of communication between those who live in different countries and speak different languages. However, translation between distant languages constitutes a challenge for machines. Therefore, translation evaluation is poised to play a significant role in the process of designing and developing effective MT systems. This book evaluates three prominent MT systems, including Google Translate, Microsoft Translator, and Sakhr, each of which provides translation between English and Arabic. In the book Almahasees scrutinizes the capacity of the three systems in dealing with translation between English and Arabic in a large corpus taken from various domains, including the United Nation (UN), the World Health Organization (WHO), the Arab League, Petra News Agency reports, and two literary texts: The Old Man and the Sea and The Prophet. The evaluation covers holistic analysis to assess the output of the three systems in terms of Translation Automation User Society (TAUS) adequacy and fluency scales. The text also looks at error analysis to evaluate the systems’ output in terms of orthography, lexis, grammar, and semantics at the entire-text level and in terms of lexis, grammar, and semantics at the collocation level. The research findings contained within this volume provide important feedback about the capabilities of the three MT systems with respect to EnglishArabic translation and paves the way for further research on such an important topic. This book will be of interest to scholars and students of translation studies and translation technology.

Book Machine Translation and Global Research

Download or read book Machine Translation and Global Research written by Lynne Bowker and published by Emerald Group Publishing. This book was released on 2019-05-01 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lynne Bowker and Jairo Buitrago Ciro introduce the concept of machine translation literacy, a new kind of literacy for scholars and librarians in the digital age. This book is a must-read for researchers and information professionals eager to maximize the global reach and impact of any form of scholarly work.

Book Progress in Machine Translation

Download or read book Progress in Machine Translation written by Sergei Nirenburg and published by IOS Press. This book was released on 1993 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deep Learning in Natural Language Processing

Download or read book Deep Learning in Natural Language Processing written by Li Deng and published by Springer. This book was released on 2018-05-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.

Book Human in the Loop Machine Learning

Download or read book Human in the Loop Machine Learning written by Robert Munro and published by Simon and Schuster. This book was released on 2021-07-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

Book Introduction to Natural Language Processing

Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Book Machine Translation

Download or read book Machine Translation written by Pushpak Bhattacharyya and published by CRC Press. This book was released on 2015-02-04 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compares and contrasts the principles and practices of rule-based machine translation (RBMT), statistical machine translation (SMT), and example-based machine translation (EBMT). Presenting numerous examples, the text introduces language divergence as the fundamental challenge to machine translation, emphasizes and works out word alignment, explores IBM models of machine translation, covers the mathematics of phrase-based SMT, provides complete walk-throughs of the working of interlingua-based and transfer-based RBMT, and analyzes EBMT, showing how translation parts can be extracted and recombined to automatically translate a new input.

Book Machine Learning in Translation

Download or read book Machine Learning in Translation written by Peng Wang and published by Taylor & Francis. This book was released on 2023-04-12 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Translation introduces machine learning (ML) theories and technologies that are most relevant to translation processes, approaching the topic from a human perspective and emphasizing that ML and ML-driven technologies are tools for humans. Providing an exploration of the common ground between human and machine learning and of the nature of translation that leverages this new dimension, this book helps linguists, translators, and localizers better find their added value in a ML-driven translation environment. Part One explores how humans and machines approach the problem of translation in their own particular ways, in terms of word embeddings, chunking of larger meaning units, and prediction in translation based upon the broader context. Part Two introduces key tasks, including machine translation, translation quality assessment and quality estimation, and other Natural Language Processing (NLP) tasks in translation. Part Three focuses on the role of data in both human and machine learning processes. It proposes that a translator’s unique value lies in the capability to create, manage, and leverage language data in different ML tasks in the translation process. It outlines new knowledge and skills that need to be incorporated into traditional translation education in the machine learning era. The book concludes with a discussion of human-centered machine learning in translation, stressing the need to empower translators with ML knowledge, through communication with ML users, developers, and programmers, and with opportunities for continuous learning. This accessible guide is designed for current and future users of ML technologies in localization workflows, including students on courses in translation and localization, language technology, and related areas. It supports the professional development of translation practitioners, so that they can fully utilize ML technologies and design their own human-centered ML-driven translation workflows and NLP tasks.

Book TensorFlow Deep Learning Projects

Download or read book TensorFlow Deep Learning Projects written by Alexey Grigorev and published by Packt Publishing Ltd. This book was released on 2018-03-28 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenarios Key Features Build efficient deep learning pipelines using the popular Tensorflow framework Train neural networks such as ConvNets, generative models, and LSTMs Includes projects related to Computer Vision, stock prediction, chatbots and more Book Description TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects. TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently. What you will learn Set up the TensorFlow environment for deep learning Construct your own ConvNets for effective image processing Use LSTMs for image caption generation Forecast stock prediction accurately with an LSTM architecture Learn what semantic matching is by detecting duplicate Quora questions Set up an AWS instance with TensorFlow to train GANs Train and set up a chatbot to understand and interpret human input Build an AI capable of playing a video game by itself –and win it! Who this book is for This book is for data scientists, machine learning developers as well as deep learning practitioners, who want to build interesting deep learning projects that leverage the power of Tensorflow. Some understanding of machine learning and deep learning, and familiarity with the TensorFlow framework is all you need to get started with this book.

Book Computational Linguistics and Intelligent Text Processing

Download or read book Computational Linguistics and Intelligent Text Processing written by Alexander Gelbukh and published by Springer Science & Business Media. This book was released on 2010-03-18 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 11th International Conference on Computational Linguistics and Intelligent Text Processing, held in Iaşi, Romania, in March 2010. The 60 paper included in the volume were carefully reviewed and selected from numerous submissions. The book also includes 3 invited papers. The topics covered are: lexical resources, syntax and parsing, word sense disambiguation and named entity recognition, semantics and dialog, humor and emotions, machine translation and multilingualism, information extraction, information retrieval, text categorization and classification, plagiarism detection, text summarization, and speech generation.