EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Materials Informatics

Download or read book Materials Informatics written by Olexandr Isayev and published by John Wiley & Sons. This book was released on 2019-12-04 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.

Book An Introduction to Materials Informatics

Download or read book An Introduction to Materials Informatics written by Tongyi Zhang and published by Springer. This book was released on 2024-02-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook educates current and future materials workers, engineers, and researchers on Materials Informatics. Volume I serves as an introduction, merging AI, ML, materials science, and engineering. It covers essential topics and algorithms in 11 chapters, including Linear Regression, Neural Networks, and more. Suitable for diverse fields like materials science, physics, and chemistry, it enables quick and easy learning of Materials Informatics for readers without prior AI and ML knowledge.

Book Machine Learning in Materials Informatics

Download or read book Machine Learning in Materials Informatics written by Yuling An and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about machine learning in materials informatics

Book Artificial Intelligence for Materials Science

Download or read book Artificial Intelligence for Materials Science written by Yuan Cheng and published by Springer Nature. This book was released on 2021-03-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Book Nanoinformatics

Download or read book Nanoinformatics written by Isao Tanaka and published by Springer. This book was released on 2018-01-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which “big-data” generated by experiments or computations are fully utilized to accelerate discovery of new materials, key factors, and design rules. Data-intensive approaches play indispensable roles in advanced materials characterization. "Materials informatics" is the central paradigm in the new trend. "Nanoinformatics" is its essential subset, which focuses on nanostructures of materials such as surfaces, interfaces, dopants, and point defects, playing a critical role in determining materials properties. There have been significant advances in experimental and computational techniques to characterize individual atoms in nanostructures and to gain quantitative information. The collaboration of researchers in materials science and information science is growing actively and is creating a new trend in materials science and engineering.

Book Reviews in Computational Chemistry  Volume 29

Download or read book Reviews in Computational Chemistry Volume 29 written by Abby L. Parrill and published by John Wiley & Sons. This book was released on 2016-04-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding

Book Homology and Machine Learning for Materials Informatics

Download or read book Homology and Machine Learning for Materials Informatics written by Bart Olsthoorn and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Materials Discovery and Design

Download or read book Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2018-09-22 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Book The Fourth Paradigm

Download or read book The Fourth Paradigm written by Anthony J. G. Hey and published by . This book was released on 2009 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword. A transformed scientific method. Earth and environment. Health and wellbeing. Scientific infrastructure. Scholarly communication.

Book Materials Informatics and Catalysts Informatics

Download or read book Materials Informatics and Catalysts Informatics written by Keisuke Takahashi and published by Springer Nature. This book was released on with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Information Science for Materials Discovery and Design

Download or read book Information Science for Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2015-12-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Book Machine Learning in Industry

Download or read book Machine Learning in Industry written by Shubhabrata Datta and published by Springer Nature. This book was released on 2021-07-24 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.

Book Materials Data Science

Download or read book Materials Data Science written by Stefan Sandfeld and published by Springer. This book was released on 2023-12-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented “from scratch” using Python and NumPy. The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes’ theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced. The final part on neural networks and deep learning aims to promote an understanding of these methods and dispel misconceptions that they are a “black box”. The complexity gradually increases until fully connected networks can be implemented. Advanced techniques and network architectures, including GANs, are implemented “from scratch” using Python and NumPy, which facilitates a comprehensive understanding of all the details and enables the user to conduct their own experiments in Deep Learning.

Book Deep Learning  Machine Learning and IoT in Biomedical and Health Informatics

Download or read book Deep Learning Machine Learning and IoT in Biomedical and Health Informatics written by Sujata Dash and published by CRC Press. This book was released on 2022-02-10 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

Download or read book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics written by Abhishek Kumar and published by CRC Press. This book was released on 2022-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.

Book Computational Intelligence for Machine Learning and Healthcare Informatics

Download or read book Computational Intelligence for Machine Learning and Healthcare Informatics written by Rajshree Srivastava and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-22 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.

Book Machine Learning Paradigms

Download or read book Machine Learning Paradigms written by Maria Virvou and published by Springer. This book was released on 2019-03-16 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.