EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Supervised Sequence Labelling with Recurrent Neural Networks

Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Book Long Short Term Memory Networks With Python

Download or read book Long Short Term Memory Networks With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-07-20 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Long Short-Term Memory network, or LSTM for short, is a type of recurrent neural network that achieves state-of-the-art results on challenging prediction problems. In this laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about LSTMs. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what LSTMs are, and how to develop a suite of LSTM models to get the most out of the method on your sequence prediction problems.

Book Supervised Machine Learning for Text Analysis in R

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Book Applications of Artificial Intelligence in Process Systems Engineering

Download or read book Applications of Artificial Intelligence in Process Systems Engineering written by Jingzheng Ren and published by Elsevier. This book was released on 2021-06-05 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering

Book Deep Learning Classifiers with Memristive Networks

Download or read book Deep Learning Classifiers with Memristive Networks written by Alex Pappachen James and published by Springer. This book was released on 2019-04-08 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Book Statistical Process Monitoring Using Advanced Data Driven and Deep Learning Approaches

Download or read book Statistical Process Monitoring Using Advanced Data Driven and Deep Learning Approaches written by Fouzi Harrou and published by Elsevier. This book was released on 2020-07-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods

Book Interactions Between Short Term and Long Term Memory in the Verbal Domain

Download or read book Interactions Between Short Term and Long Term Memory in the Verbal Domain written by Annabel Thorn and published by Psychology Press. This book was released on 2008-08-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relationship between short-term and long-term memory systems is an issue of central concern to memory theorists. The association between temporary memory mechanisms and established knowledge bases is now regarded as critical to the development of theoretical and computational accounts of verbal short-term memory functioning. However, to date there is no single publication that provides dedicated and full coverage of current understanding of the association between short-term and long-term memory systems. Interactions between Short-Term and Long-Term Memory in the Verbal Domain is the first volume to comprehensively address this key issue. The book, focusing specifically on memory for verbal information, comprises chapters covering current theoretical approaches, together with the very latest experimental work, from leading researchers in the field. Chapters contributed to the book draw on both cognitive and neuropsychological research and reflect both conceptual and computational approaches to theorising. The contributing authors represent current research perspectives from both sides of the Atlantic. By addressing this important topic head-on, Interactions between Short-Term and Long-Term Memory in the Verbal Domain represents an invaluable resource for academics and students alike.

Book Deep Learning with TensorFlow

Download or read book Deep Learning with TensorFlow written by Giancarlo Zaccone and published by Packt Publishing Ltd. This book was released on 2017-04-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of this comprehensive TensorFlow guide About This Book Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Real-world contextualization through some deep learning problems concerning research and application Who This Book Is For The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus. What You Will Learn Learn about machine learning landscapes along with the historical development and progress of deep learning Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x Access public datasets and utilize them using TensorFlow to load, process, and transform data Use TensorFlow on real-world datasets, including images, text, and more Learn how to evaluate the performance of your deep learning models Using deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications In Detail Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects. Style and approach This step-by-step guide will explore common, and not so common, deep neural networks and show how these can be exploited in the real world with complex raw data. With the help of practical examples, you will learn how to implement different types of neural nets to build smart applications related to text, speech, and image data processing.

Book Deep Learning for Time Series Forecasting

Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Book Flood Forecasting Using Machine Learning Methods

Download or read book Flood Forecasting Using Machine Learning Methods written by Fi-John Chang and published by MDPI. This book was released on 2019-02-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.

Book Soft Computing for Problem Solving

Download or read book Soft Computing for Problem Solving written by Jagdish Chand Bansal and published by Springer. This book was released on 2018-10-30 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book presents outcomes of the 7th International Conference on Soft Computing for Problem Solving, SocProS 2017. This conference is a joint technical collaboration between the Soft Computing Research Society, Liverpool Hope University (UK), the Indian Institute of Technology Roorkee, the South Asian University New Delhi and the National Institute of Technology Silchar, and brings together researchers, engineers and practitioners to discuss thought-provoking developments and challenges in order to select potential future directions The book presents the latest advances and innovations in the interdisciplinary areas of soft computing, including original research papers in the areas including, but not limited to, algorithms (artificial immune systems, artificial neural networks, genetic algorithms, genetic programming, and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). It is a valuable resource for both young and experienced researchers dealing with complex and intricate real-world problems for which finding a solution by traditional methods is a difficult task.

Book Discovering the Brain

    Book Details:
  • Author : National Academy of Sciences
  • Publisher : National Academies Press
  • Release : 1992-01-01
  • ISBN : 0309045290
  • Pages : 195 pages

Download or read book Discovering the Brain written by National Academy of Sciences and published by National Academies Press. This book was released on 1992-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."

Book Smart Computing and Self Adaptive Systems

Download or read book Smart Computing and Self Adaptive Systems written by Simar Preet Singh and published by CRC Press. This book was released on 2021-12-19 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book intends to cover various problematic aspects of emerging smart computing and self-adapting technologies comprising of machine learning, artificial intelligence, deep learning, robotics, cloud computing, fog computing, data mining algorithms, including emerging intelligent and smart applications related to these research areas. Further coverage includes implementation of self-adaptation architecture for smart devices, self-adaptive models for smart cities and self-driven cars, decentralized self-adaptive computing at the edge networks, energy-aware AI-based systems, M2M networks, sensors, data analytics, algorithms and tools for engineering self-adaptive systems, and so forth. Acts as guide to Self-healing and Self-adaptation based fully automatic future technologies Discusses about Smart Computational abilities and self-adaptive systems Illustrates tools and techniques for data management and explains the need to apply, and data integration for improving efficiency of big data Exclusive chapter on the future of self-stabilizing and self-adaptive systems of systems Covers fields such as automation, robotics, medical sciences, biomedical and agricultural sciences, healthcare and so forth This book is aimed researchers and graduate students in machine learning, information technology, and artificial intelligence.

Book Spatial  Long  and Short Term Memory

Download or read book Spatial Long and Short Term Memory written by Edward A. Thayer and published by Nova Science Publishers. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Memory is one of the earliest cognitive functions to show decline during aging and some neurodegenerative diseases and this decline has a social and economic impact on individuals, families, the health care system, and society as a whole. This book examines spatial, long-and short term memory loss. The aim of the first chapter is to discuss and detail several well-established spacial-memory behavioral tests, focusing specially on the MWM, describing the principal advantages or disadvantages of these memory tasks. Chapter two examines the importance of the AMPAr and its specific subunits in LTP processes as well as the formation and utilisation of spatial memory representations. Chapter three studies grizzly bears and examines their spatial and visual memory. Chapter four introduces a study to show that difficulty encoding relational information between spatial locations presented in random positions simultaneously is responsible for impaired visuospatial working memory. Chapter five describes short and long term memory functions in children with idiopathic epilepsy and assesses a novel cognitive behavioral group intervention aiming to improve memory deficits in this population whose deficits are specified and their background capacities are preserved. Chapter six studies the emergence of self-reference effect in episodic memory during early childhood. Chapter seven analyses an optical memory model of the human brain. Chapter eight studies an fNIRS study on adaptive memory. The final chapter identifies the synaptic and structural mechanisms that drive plasticity, as well as describes the purported processes responsible for short- and long-term memory.

Book Advanced Classification Techniques for Healthcare Analysis

Download or read book Advanced Classification Techniques for Healthcare Analysis written by Chakraborty, Chinmay and published by IGI Global. This book was released on 2019-02-22 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.

Book The Age of Intelligent Machines

Download or read book The Age of Intelligent Machines written by Ray Kurzweil and published by Cambridge, Mass. : MIT Press. This book was released on 1992 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comparing the human brain with so-called artificial intelligence, the author probes past, present, and future attempts to create machine intelligence

Book Advanced Forecasting with Python

Download or read book Advanced Forecasting with Python written by Joos Korstanje and published by Apress. This book was released on 2021-07-03 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model. Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, a mathematical transcription of the idea, and Python code that applies the model to an example data set. Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will Learn Carry out forecasting with Python Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing Select the right model for the right use case Who This Book Is For The advanced nature of the later chapters makes the book relevant for applied experts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models.