Download or read book Credit Scoring and Its Applications Second Edition written by Lyn Thomas and published by SIAM. This book was released on 2017-08-16 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Credit Scoring and Its Applications?is recognized as the bible of credit scoring. It contains a comprehensive review of the objectives, methods, and practical implementation of credit and behavioral scoring. The authors review principles of the statistical and operations research methods used in building scorecards, as well as the advantages and disadvantages of each approach. The book contains a description of practical problems encountered in building, using, and monitoring scorecards and examines some of the country-specific issues in bankruptcy, equal opportunities, and privacy legislation. It contains a discussion of economic theories of consumers' use of credit, and readers will gain an understanding of what lending institutions seek to achieve by using credit scoring and the changes in their objectives.? New to the second edition are lessons that can be learned for operations research model building from the global financial crisis, current applications of scoring, discussions on the Basel Accords and their requirements for scoring, new methods for scorecard building and new expanded sections on ways of measuring scorecard performance. And survival analysis for credit scoring. Other unique features include methods of monitoring scorecards and deciding when to update them, as well as different applications of scoring, including direct marketing, profit scoring, tax inspection, prisoner release, and payment of fines.?
Download or read book Credit Risk Scorecards written by Naeem Siddiqi and published by John Wiley & Sons. This book was released on 2012-06-29 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Credit Risk Scorecards "Scorecard development is important to retail financial services in terms of credit risk management, Basel II compliance, and marketing of credit products. Credit Risk Scorecards provides insight into professional practices in different stages of credit scorecard development, such as model building, validation, and implementation. The book should be compulsory reading for modern credit risk managers." —Michael C. S. Wong Associate Professor of Finance, City University of Hong Kong Hong Kong Regional Director, Global Association of Risk Professionals "Siddiqi offers a practical, step-by-step guide for developing and implementing successful credit scorecards. He relays the key steps in an ordered and simple-to-follow fashion. A 'must read' for anyone managing the development of a scorecard." —Jonathan G. Baum Chief Risk Officer, GE Consumer Finance, Europe "A comprehensive guide, not only for scorecard specialists but for all consumer credit professionals. The book provides the A-to-Z of scorecard development, implementation, and monitoring processes. This is an important read for all consumer-lending practitioners." —Satinder Ahluwalia Vice President and Head-Retail Credit, Mashreqbank, UAE "This practical text provides a strong foundation in the technical issues involved in building credit scoring models. This book will become required reading for all those working in this area." —J. Michael Hardin, PhD Professor of StatisticsDepartment of Information Systems, Statistics, and Management ScienceDirector, Institute of Business Intelligence "Mr. Siddiqi has captured the true essence of the credit risk practitioner's primary tool, the predictive scorecard. He has combined both art and science in demonstrating the critical advantages that scorecards achieve when employed in marketing, acquisition, account management, and recoveries. This text should be part of every risk manager's library." —Stephen D. Morris Director, Credit Risk, ING Bank of Canada
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Download or read book Credit Scoring and Its Applications Second Edition written by Lyn Thomas and published by SIAM. This book was released on 2017-08-16 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Credit Scoring and Its Applications is recognized as the bible of credit scoring. It contains a comprehensive review of the objectives, methods, and practical implementation of credit and behavioral scoring. The authors review principles of the statistical and operations research methods used in building scorecards, as well as the advantages and disadvantages of each approach. The book contains a description of practical problems encountered in building, using, and monitoring scorecards and examines some of the country-specific issues in bankruptcy, equal opportunities, and privacy legislation. It contains a discussion of economic theories of consumers' use of credit, and readers will gain an understanding of what lending institutions seek to achieve by using credit scoring and the changes in their objectives. New to the second edition are lessons that can be learned for operations research model building from the global financial crisis, current applications of scoring, discussions on the Basel Accords and their requirements for scoring, new methods for scorecard building and new expanded sections on ways of measuring scorecard performance. And survival analysis for credit scoring. Other unique features include methods of monitoring scorecards and deciding when to update them, as well as different applications of scoring, including direct marketing, profit scoring, tax inspection, prisoner release, and payment of fines.
Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Download or read book Bio Inspired Credit Risk Analysis written by Lean Yu and published by Springer. This book was released on 2010-10-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.
Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Download or read book The Credit Scoring Toolkit written by Raymond Anderson and published by Oxford University Press. This book was released on 2007-08-30 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Credit Scoring Toolkit provides an all-encompassing view of the use of statistical models to assess retail credit risk and provide automated decisions.In eight modules, the book provides frameworks for both theory and practice. It first explores the economic justification and history of Credit Scoring, risk linkages and decision science, statistical and mathematical tools, the assessment of business enterprises, and regulatory issues ranging from data privacy to Basel II. It then provides a practical how-to-guide for scorecard development, including data collection, scorecard implementation, and use within the credit risk management cycle.Including numerous real-life examples and an extensive glossary and bibliography, the text assumes little prior knowledge making it an indispensable desktop reference for graduate students in statistics, business, economics and finance, MBA students, credit risk and financial practitioners.
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Download or read book Intelligent Credit Scoring written by Naeem Siddiqi and published by John Wiley & Sons. This book was released on 2017-01-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: A better development and implementation framework for credit risk scorecards Intelligent Credit Scoring presents a business-oriented process for the development and implementation of risk prediction scorecards. The credit scorecard is a powerful tool for measuring the risk of individual borrowers, gauging overall risk exposure and developing analytically driven, risk-adjusted strategies for existing customers. In the past 10 years, hundreds of banks worldwide have brought the process of developing credit scoring models in-house, while ‘credit scores' have become a frequent topic of conversation in many countries where bureau scores are used broadly. In the United States, the ‘FICO' and ‘Vantage' scores continue to be discussed by borrowers hoping to get a better deal from the banks. While knowledge of the statistical processes around building credit scorecards is common, the business context and intelligence that allows you to build better, more robust, and ultimately more intelligent, scorecards is not. As the follow-up to Credit Risk Scorecards, this updated second edition includes new detailed examples, new real-world stories, new diagrams, deeper discussion on topics including WOE curves, the latest trends that expand scorecard functionality and new in-depth analyses in every chapter. Expanded coverage includes new chapters on defining infrastructure for in-house credit scoring, validation, governance, and Big Data. Black box scorecard development by isolated teams has resulted in statistically valid, but operationally unacceptable models at times. This book shows you how various personas in a financial institution can work together to create more intelligent scorecards, to avoid disasters, and facilitate better decision making. Key items discussed include: Following a clear step by step framework for development, implementation, and beyond Lots of real life tips and hints on how to detect and fix data issues How to realise bigger ROI from credit scoring using internal resources Explore new trends and advances to get more out of the scorecard Credit scoring is now a very common tool used by banks, Telcos, and others around the world for loan origination, decisioning, credit limit management, collections management, cross selling, and many other decisions. Intelligent Credit Scoring helps you organise resources, streamline processes, and build more intelligent scorecards that will help achieve better results.
Download or read book Practical Guide to Logistic Regression written by Joseph M. Hilbe and published by CRC Press. This book was released on 2016-04-05 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Guide to Logistic Regression covers the key points of the basic logistic regression model and illustrates how to use it properly to model a binary response variable. This powerful methodology can be used to analyze data from various fields, including medical and health outcomes research, business analytics and data science, ecology, fishe
Download or read book Credit Risk Modeling using Excel and VBA written by Gunter Löeffler and published by Wiley. This book was released on 2007-06-05 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today's increasingly competitive financial world, successful risk management, portfolio management, and financial structuring demand more than up-to-date financial know-how. They also call for quantitative expertise, including the ability to effectively apply mathematical modeling tools and techniques, in this case credit. Credit Risk Modeling using Excel and VBA with DVD provides practitioners with a hands on introduction to credit risk modeling. Instead of just presenting analytical methods it shows how to implement them using Excel and VBA, in addition to a detailed description in the text a DVD guides readers step by step through the implementation. The authors begin by showing how to use option theoretic and statistical models to estimate a borrowers default risk. The second half of the book is devoted to credit portfolio risk. The authors guide readers through the implementation of a credit risk model, show how portfolio models can be validated or used to access structured credit products like CDO’s. The final chapters address modeling issues associated with the new Basel Accord.
Download or read book Soft Computing and its Applications in Business and Economics written by Rafik Aziz Aliev and published by Springer. This book was released on 2012-08-10 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Soft Computing and its Applications in Business and Economics," or SC-BE for short, is a work whose importance is hard to exaggerate. Authored by leading contributors to soft computing and its applications, SC-BE is a sequel to an earlier book by Professors R. A. Aliev and R. R. Aliev, "Soft Computing and Its Applications," World Scientific, 200l. SC-BE is a self-contained exposition of the foundations of soft computing, and presents a vast compendium of its applications to business, finance, decision analysis and economics. One cannot but be greatly impressed by the wide variety of applications - applications ranging from use of fuzzy logic in transportation and health case systems, to use of a neuro-fuzzy approach to modeling of credit risk in trading, and application of soft computing to e-commerce. To view the contents of SC-BE in a clearer perspective, a bit of history is in order. In science, as in other realms of human activity, there is a tendency to be nationalistic - to commit oneself to a particular methodology and relegate to a position of inferiority or irrelevance all alternative methodologies. As we move further into the age of machine intelligence and automated reasoning, we run into more and more problems which do not lend themselves to solution through the use of our favorite methodology.
Download or read book Web Information Systems and Applications written by Guojun Wang and published by Springer Nature. This book was released on 2020-09-22 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 17th International Conference on Web Information Systems and Applications, WISA 2020, held in Guangzhou, China, in September 2020. The 42 full papers and 16 short papers presented were carefully reviewed and selected from 165 submissions. The papers are grouped in topical sections on world wide web, recommendation, query processing and algorithm, natural language processing, machine learning, graph query, edge computing and data mining, data privacy and security, and blockchain.
Download or read book Data Mining Using SAS Enterprise Miner written by Randall Matignon and published by John Wiley & Sons. This book was released on 2007-08-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.
Download or read book Advances in Artificial Intelligence and Its Applications written by Obdulia Pichardo Lagunas and published by Springer. This book was released on 2015-11-19 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNAI 9413 + 9414 constitutes the proceedings of the 14th Mexican International Conference on Artificial Intelligence, MICAI 2015, held in Cuernavaca,. Morelos, Mexico, in October 2015. The total of 98 papers presented in these proceedings was carefully reviewed and selected from 297 submissions. They were organized in topical sections named: natural language processing; logic and multi-agent systems; bioinspired algorithms; neural networks; evolutionary algorithms; fuzzy logic; machine learning and data mining; natural language processing applications; educational applications; biomedical applications; image processing and computer vision; search and optimization; forecasting; and intelligent applications.
Download or read book Handbook of Credit Scoring written by Elizabeth Mays and published by Global Professional Publishi. This book was released on 1995-03 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: · Credit scoring is a vital and sometimes misunderstood tool in financial services · Evaluates the different systems available Bankers and lenders depend on credit scoring to determine the best credit risks--and ensure maximum profit and security from their loan portfolios. Handbook of Credit Scoring offers the insights of a select group of experts on credit scoring systems. Topics include: Scoring Applications, Generic and Customized Scoring Models, Using consumer credit information, Scorecard modelling with continuous vs. Classed variables, Basic scorecard Development and Validation, Going beyond Credit Score, Data mining, Scorecard collection strategies, project management for Credit Scoring