EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis of Ordinal Categorical Data

Download or read book Analysis of Ordinal Categorical Data written by Alan Agresti and published by John Wiley & Sons. This book was released on 2012-07-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.

Book Regression   Linear Modeling

Download or read book Regression Linear Modeling written by Jason W. Osborne and published by SAGE Publications. This book was released on 2016-03-24 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.

Book An Introduction to Categorical Data Analysis

Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Book Log Linear Models and Logistic Regression

Download or read book Log Linear Models and Logistic Regression written by Ronald Christensen and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.

Book Ordinal Log Linear Models

Download or read book Ordinal Log Linear Models written by Masako Ishii-Kuntz and published by SAGE Publications, Incorporated. This book was released on 1994-01-11 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: What log-linear models can social scientists use to examine categorical variables whose attributes may be logically rank-ordered? In this book, the author presents a technique that is often overlooked but highly advantageous when dealing with such ordered variables as social class, political ideology and life satisfaction attitudes. Beginning with an introduction to the concept and measurement of ordinal models and a brief review of nominal log-linear analysis, the book provides a detailed description of the various ordinal models, including row effects, column effects, uniform association and uniform interaction models. Each model is illustrated with data from the National Survey of Families and Households, with which Ishii-Kuntz discusses

Book Logit Modeling

Download or read book Logit Modeling written by Alfred DeMaris and published by SAGE. This book was released on 1992-06-06 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.

Book Regression Models for Categorical and Limited Dependent Variables

Download or read book Regression Models for Categorical and Limited Dependent Variables written by J. Scott Long and published by SAGE. This book was released on 1997-01-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.

Book Regression Models for Categorical Dependent Variables Using Stata  Second Edition

Download or read book Regression Models for Categorical Dependent Variables Using Stata Second Edition written by J. Scott Long and published by Stata Press. This book was released on 2006 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.

Book Logistic Regression Models for Ordinal Response Variables

Download or read book Logistic Regression Models for Ordinal Response Variables written by Ann A. O'Connell and published by SAGE. This book was released on 2006 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinal measures provide a simple and convenient way to distinguish among possible outcomes. The book provides practical guidance on using ordinal outcome models.

Book Regression for Categorical Data

Download or read book Regression for Categorical Data written by Gerhard Tutz and published by Cambridge University Press. This book was released on 2011-11-21 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.

Book Handbook of Regression Modeling in People Analytics

Download or read book Handbook of Regression Modeling in People Analytics written by Keith McNulty and published by CRC Press. This book was released on 2021-07-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.

Book Logistic Regression

Download or read book Logistic Regression written by Scott W. Menard and published by SAGE. This book was released on 2010 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.

Book Foundations of Linear and Generalized Linear Models

Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Book Categorical Data Analysis and Multilevel Modeling Using R

Download or read book Categorical Data Analysis and Multilevel Modeling Using R written by Xing Liu and published by SAGE Publications. This book was released on 2022-02-24 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.

Book Interpreting Probability Models

Download or read book Interpreting Probability Models written by Tim Futing Liao and published by SAGE. This book was released on 1994-06-30 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.

Book Statistical Methods for Categorical Data Analysis

Download or read book Statistical Methods for Categorical Data Analysis written by Daniel Powers and published by Emerald Group Publishing. This book was released on 2008-11-13 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/

Book Applied Ordinal Logistic Regression Using Stata

Download or read book Applied Ordinal Logistic Regression Using Stata written by Xing Liu and published by SAGE Publications. This book was released on 2015-09-30 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to provide a unified framework for both single-level and multilevel modeling of ordinal categorical data, Applied Ordinal Logistic Regression Using Stata helps readers learn how to conduct analyses, interpret the results from Stata output, and present those results in scholarly writing. Using step-by-step instructions, this non-technical, applied book leads students, applied researchers, and practitioners to a deeper understanding of statistical concepts by closely connecting the underlying theories of models with the application of real-world data using statistical software. An open-access website for the book contains data sets, Stata code, and answers to in-text questions.