EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Log Linear Models and Logistic Regression

Download or read book Log Linear Models and Logistic Regression written by Ronald Christensen and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.

Book Log Linear Models

    Book Details:
  • Author : Ronald Christensen
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-14
  • ISBN : 1475741111
  • Pages : 420 pages

Download or read book Log Linear Models written by Ronald Christensen and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines log-linear models for contingency tables. Logistic re gression and logistic discrimination are treated as special cases and gener alized linear models (in the GLIM sense) are also discussed. The book is designed to fill a niche between basic introductory books such as Fienberg (1980) and Everitt (1977) and advanced books such as Bishop, Fienberg, and Holland (1975), Haberman (1974), and Santner and Duffy (1989). lt is primarily directed at advanced Masters degree students in Statistics but it can be used at both higher and lower levels. The primary theme of the book is using previous knowledge of analysis of variance and regression to motivate and explicate the use of log-linear models. Of course, both the analogies and the distinctions between the different methods must be kept in mind. The book is written at several levels. A basic introductory course would take material from Chapters I, II (deemphasizing Section II. 4), III, Sec tions IV. 1 through IV. 5 (eliminating the material on graphical models), Section IV. lü, Chapter VII, and Chapter IX. The advanced modeling ma terial at the end of Sections VII. 1, VII. 2, and possibly the material in Section IX. 2 should be deleted in a basic introductory course. For Mas ters degree students in Statistics, all the material in Chapters I through V, VII, IX, and X should be accessible. For an applied Ph. D.

Book Regression   Linear Modeling

Download or read book Regression Linear Modeling written by Jason W. Osborne and published by SAGE Publications. This book was released on 2016-03-24 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.

Book Log Linear Models and Logistic Regression

Download or read book Log Linear Models and Logistic Regression written by Ronald Christensen and published by Springer. This book was released on 2013-03-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.

Book Interpretable Machine Learning

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Book Foundations of Linear and Generalized Linear Models

Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Book Generalized Linear Models

Download or read book Generalized Linear Models written by P. McCullagh and published by Routledge. This book was released on 2019-01-22 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot

Book Learning Statistics Using R

Download or read book Learning Statistics Using R written by Randall E. Schumacker and published by SAGE Publications. This book was released on 2014-01-28 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.

Book Log Linear Models for Event Histories

Download or read book Log Linear Models for Event Histories written by Jeroen K. Vermunt and published by SAGE Publications, Incorporated. This book was released on 1997-05-13 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Event history analysis has been a useful method in the social sciences for studying the processes of social change. However, a main difficulty in using this technique is to observe all relevant explanatory variables without missing any variables. This book presents a general approach to missing data problems in event history analysis which is based on the similarities between log-linear models, hazard models and event history models. It begins with a discussion of log-rate models, modified path models and methods for obtaining maximum likelihood estimates of the parameters of log-linear models. The author then shows how to incorporate variables with missing information in log-linear models - including latent class models, m

Book Logistic Regression

Download or read book Logistic Regression written by Scott W. Menard and published by SAGE. This book was released on 2010 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.

Book Applied Logistic Regression Analysis

Download or read book Applied Logistic Regression Analysis written by Scott Menard and published by SAGE. This book was released on 2002 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus in this Second Edition is again on logistic regression models for individual level data, but aggregate or grouped data are also considered. The book includes detailed discussions of goodness of fit, indices of predictive efficiency, and standardized logistic regression coefficients, and examples using SAS and SPSS are included. More detailed consideration of grouped as opposed to case-wise data throughout the book Updated discussion of the properties and appropriate use of goodness of fit measures, R-square analogues, and indices of predictive efficiency Discussion of the misuse of odds ratios to represent risk ratios, and of over-dispersion and under-dispersion for grouped data Updated coverage of unordered and ordered polytomous logistic regression models.

Book Generalized Linear Models and Extensions  Second Edition

Download or read book Generalized Linear Models and Extensions Second Edition written by James W. Hardin and published by Stata Press. This book was released on 2007 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.

Book Analyzing Tabular Data

Download or read book Analyzing Tabular Data written by Nigel Gilbert and published by Taylor & Francis. This book was released on 2022-02-10 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1993, Analyzing Tabular Data is an accessible text introducing a powerful range of analytical methods. Empirical social research almost invariably requires the presentation and analysis of tables, and this book is for those who have little prior knowledge of quantitative analysis or statistics, but who have a practical need to extract the most from their data. The book begins with an introduction to the process of data analysis and the basic structure of cross-tabulations. At the core of the methods described in the text is the loglinear model. This and the logistic model, are explained and their application to causal modelling, to event history analysis, and to social mobility research are described in detail. Each chapter concludes with sample programs to show how analysis on typical datasets can be carried out using either the popular computer packages, SPSS, or the statistical programme, GLIM. The book is packed with examples which apply the methods to social science research. Sociologists, geographers, psychologists, economists, market researchers and those involved in survey research in the fields of planning, evaluation and policy will find the book to be a clear and thorough exposition of methods for the analysis of tabular data.

Book Linear Probability  Logit  and Probit Models

Download or read book Linear Probability Logit and Probit Models written by John H. Aldrich and published by SAGE. This book was released on 1984-11 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.

Book Applying Generalized Linear Models

Download or read book Applying Generalized Linear Models written by James K. Lindsey and published by Springer Science & Business Media. This book was released on 2008-01-15 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Book Best Practices in Logistic Regression

Download or read book Best Practices in Logistic Regression written by Jason W. Osborne and published by SAGE Publications. This book was released on 2014-02-26 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jason W. Osborne’s Best Practices in Logistic Regression provides students with an accessible, applied approach that communicates logistic regression in clear and concise terms. The book effectively leverages readers’ basic intuitive understanding of simple and multiple regression to guide them into a sophisticated mastery of logistic regression. Osborne’s applied approach offers students and instructors a clear perspective, elucidated through practical and engaging tools that encourage student comprehension.

Book Mobility Tables

    Book Details:
  • Author : Michael Hout
  • Publisher : SAGE Publications, Incorporated
  • Release : 1983-04
  • ISBN :
  • Pages : 104 pages

Download or read book Mobility Tables written by Michael Hout and published by SAGE Publications, Incorporated. This book was released on 1983-04 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the most widely used methods for analyzing cross-classified data on occupational origins and destinations. Hout reviews classic definitions, models, and sources of mobility data, as well as elementary operations for analyzing mobility tables. Tabular and graphic displays illustrate the discussion throughout.