EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Local Regression and Likelihood

Download or read book Local Regression and Likelihood written by Clive Loader and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separation of signal from noise is the most fundamental problem in data analysis, arising in such fields as: signal processing, econometrics, actuarial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, with extensions to local likelihood and density estimation. Practical information is also included on how to implement these methods in the programs S-PLUS and LOCFIT.

Book Local Polynomial Modelling and Its Applications

Download or read book Local Polynomial Modelling and Its Applications written by Jianqing Fan and published by CRC Press. This book was released on 1996-03-01 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

Book Statistical Theory and Computational Aspects of Smoothing

Download or read book Statistical Theory and Computational Aspects of Smoothing written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the main applications of statistical smoothing techniques is nonparametric regression. For the last 15 years there has been a strong theoretical interest in the development of such techniques. Related algorithmic concepts have been a main concern in computational statistics. Smoothing techniques in regression as well as other statistical methods are increasingly applied in biosciences and economics. But they are also relevant for medical and psychological research. Introduced are new developments in scatterplot smoothing and applications in statistical modelling. The treatment of the topics is on an intermediate level avoiding too much technicalities. Computational and applied aspects are considered throughout. Of particular interest to readers is the discussion of recent local fitting techniques.

Book Semantic Computing

    Book Details:
  • Author : Phillip Chen-yu Sheu
  • Publisher : World Scientific Publishing Company
  • Release : 2017-08-23
  • ISBN : 9813227931
  • Pages : 250 pages

Download or read book Semantic Computing written by Phillip Chen-yu Sheu and published by World Scientific Publishing Company. This book was released on 2017-08-23 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first volume of World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence, this volume is designed to lay the foundation for the understanding of the Semantic Computing (SC), as a core concept to study Robotic Intelligence in the subsequent volumes.This volume aims to provide a reference to the development of Semantic Computing, in the terms of 'meaning', 'context', and 'intention'. It brings together a series of technical notes, in average, no longer than 10 pages in length, each focuses on one topic in Semantic Computing; being review article or research paper, to explain the fundamental concepts, models or algorithms, and possible applications of the technology concerned.This volume will address three core areas in Semantic Computing:

Book Maximum Penalized Likelihood Estimation

Download or read book Maximum Penalized Likelihood Estimation written by Paul P. Eggermont and published by Springer. This book was released on 2011-12-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis. Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.

Book Handbook of Computational Statistics

Download or read book Handbook of Computational Statistics written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2012-07-06 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

Book Observed Brain Dynamics

    Book Details:
  • Author : Partha Mitra
  • Publisher : Oxford University Press
  • Release : 2007-12-07
  • ISBN : 0199884366
  • Pages : 404 pages

Download or read book Observed Brain Dynamics written by Partha Mitra and published by Oxford University Press. This book was released on 2007-12-07 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The biomedical sciences have recently undergone revolutionary change, due to the ability to digitize and store large data sets. In neuroscience, the data sources include measurements of neural activity measured using electrode arrays, EEG and MEG, brain imaging data from PET, fMRI, and optical imaging methods. Analysis, visualization, and management of these time series data sets is a growing field of research that has become increasingly important both for experimentalists and theorists interested in brain function. Written by investigators who have played an important role in developing the subject and in its pedagogical exposition, the current volume addresses the need for a textbook in this interdisciplinary area. The book is written for a broad spectrum of readers ranging from physical scientists, mathematicians, and statisticians wishing to educate themselves about neuroscience, to biologists who would like to learn time series analysis methods in particular and refresh their mathematical and statistical knowledge in general, through self-pedagogy. It may also be used as a supplement for a quantitative course in neurobiology or as a textbook for instruction on neural signal processing. The first part of the book contains a set of essays meant to provide conceptual background which are not technical and shall be generally accessible. Salient features include the adoption of an active perspective of the nervous system, an emphasis on function, and a brief survey of different theoretical accounts in neuroscience. The second part is the longest in the book, and contains a refresher course in mathematics and statistics leading up to time series analysis techniques. The third part contains applications of data analysis techniques to the range of data sources indicated above (also available as part of the Chronux data analysis platform from http://chronux.org), and the fourth part contains special topics.

Book Encyclopedia of Environmetrics

Download or read book Encyclopedia of Environmetrics written by Abdel H. El-Shaarawi and published by John Wiley & Sons. This book was released on 2002 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of environmetric research and its applications... Environmetrics covers the development and application of quantitative methods in the environmental sciences. It provides essential tools for understanding, predicting, and controlling the impacts of agents, both man-made and natural, which affect the environment. Basic and applied research in this area covers a broad range of topics. Primary among these are the quantitative sciences, such as statistics, probability and applied mathematics, chemometrics, and econometrics. Applications are also important, for example in, ecology and environmental biology, public health, atmospheric science, geology, engineering, risk management, and regulatory/governmental policy amongst others. * Divided into 12 sections, the Encyclopedia brings together over 600 detailed articles which have been carefully selected and reviewed through the collaborative efforts of the Editors-in-Chief and the appropriate Section Editor * Presented in alphabetical order all the articles will include an explanatory introduction, extensive cross-referencing and an up-to-date bibliography providing literature references for further reading. Presenting state of the art information in a readable, highly accessible style, the scope and coverage provided by the Encyclopedia of Environmetrics will ensure its place as the landmark reference for the many scientists, educators, and decision-makers working across this multidisciplinary field. An essential reference tool for university libraries, research laboratories, government institutions and consultancies concerned with the environmental sciences, the Encyclopedia of Environmetrics brings together for the first time, comprehensive coverage of the full range of topics, techniques and applications covered by this multidisciplinary field. There is currently no central reference source which addresses the needs of this multidisciplinary community. This new Encyclopedia will fill this gap by providing a comprehensive source of relevant fundamental concepts in environmetric research, development and applications for statisticians, mathematicians, economists, environmentalists, ecologist, government officials and policy makers.

Book Smoothing Methods in Statistics

Download or read book Smoothing Methods in Statistics written by Jeffrey S. Simonoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.

Book Advanced Introduction to Spatial Statistics

Download or read book Advanced Introduction to Spatial Statistics written by Griffith, Daniel A. and published by Edward Elgar Publishing. This book was released on 2022-08-12 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Advanced Introduction provides a critical review and discussion of research concerning spatial statistics, differentiating between it and spatial econometrics, to answer a set of core questions covering the geographic-tagging-of-data origins of the concept and its theoretical underpinnings, conceptual advances, and challenges for future scholarly work. It offers a vital tool for understanding spatial statistics and surveys how concerns about violating the independent observations assumption of statistical analysis developed into this discipline.

Book Data Analysis and Data Mining

Download or read book Data Analysis and Data Mining written by Adelchi Azzalini and published by Oxford University Press. This book was released on 2012-03-14 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.

Book Quarterly Publication of the American Statistical Association

Download or read book Quarterly Publication of the American Statistical Association written by and published by . This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Data Visualization

Download or read book Handbook of Data Visualization written by Chun-houh Chen and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.

Book Extreme Value Theory with Applications to Natural Hazards

Download or read book Extreme Value Theory with Applications to Natural Hazards written by Nicolas Bousquet and published by Springer Nature. This book was released on 2021-10-09 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated book describes statistical extreme value theory for the quantification of natural hazards, such as strong winds, floods and rainfall, and discusses an interdisciplinary approach to allow the theoretical methods to be applied. The approach consists of a number of steps: data selection and correction, non-stationary theory (to account for trends due to climate change), and selecting appropriate estimation techniques based on both decision-theoretic features (e.g., Bayesian theory), empirical robustness and a valid treatment of uncertainties. It also examines and critically reviews alternative approaches based on stochastic and dynamic numerical models, as well as recently emerging data analysis issues and presents large-scale, multidisciplinary, state-of-the-art case studies. Intended for all those with a basic knowledge of statistical methods interested in the quantification of natural hazards, the book is also a valuable resource for engineers conducting risk analyses in collaboration with scientists from other fields (such as hydrologists, meteorologists, climatologists).

Book The Elements of Statistical Learning

Download or read book The Elements of Statistical Learning written by Trevor Hastie and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Book Time Series Modelling of Water Resources and Environmental Systems

Download or read book Time Series Modelling of Water Resources and Environmental Systems written by K.W. Hipel and published by Elsevier. This book was released on 1994-04-07 with total page 1053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive presentation of the theory and practice of time series modelling of environmental systems. A variety of time series models are explained and illustrated, including ARMA (autoregressive-moving average), nonstationary, long memory, three families of seasonal, multiple input-single output, intervention and multivariate ARMA models. Other topics in environmetrics covered in this book include time series analysis in decision making, estimating missing observations, simulation, the Hurst phenomenon, forecasting experiments and causality. Professionals working in fields overlapping with environmetrics - such as water resources engineers, environmental scientists, hydrologists, geophysicists, geographers, earth scientists and planners - will find this book a valuable resource. Equally, environmetrics, systems scientists, economists, mechanical engineers, chemical engineers, and management scientists will find the time series methods presented in this book useful.

Book Regression Modelling wih Spatial and Spatial Temporal Data

Download or read book Regression Modelling wih Spatial and Spatial Temporal Data written by Robert P. Haining and published by CRC Press. This book was released on 2020-01-27 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.