Download or read book Modeling and Solving Linear Programming with R written by Jose M. Sallan and published by OmniaScience. This book was released on 2015-09-09 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programming. The power of linear programming is greatly enhanced when came the opportunity of solving integer and mixed integer linear programming. In these models all or some of the decision variables are integers, respectively. In this book we provide a brief introduction to linear programming, together with a set of exercises that introduce some applications of linear programming. We will also provide an introduction to solve linear programming in R. For each problem a possible solution through linear programming is introduced, together with the code to solve it in R and its numerical solution.
Download or read book Linear Programs and Related Problems written by Evar D. Nering and published by Academic Press. This book was released on 1993 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is concerned primarily with the theory of linear and nonlinear programming, and a number of closely-related problems, and with algorithms appropriate to those problems. In the first part of the book, the authors introduce the concept of duality which serves as a unifying concept throughout the book. The simplex algorithm is presented along with modifications and adaptations to problems with special structures. Two alternative algorithms, the ellipsoidal algorithm and Karmarker's algorithm, are also discussed, along with numerical considerations. the second part of the book looks at specific types of problems and methods for their solution. This book is designed as a textbook for mathematical programming courses, and each chapter contains numerous exercises and examples.
Download or read book An Introduction to Linear Programming and Game Theory written by Paul R. Thie and published by John Wiley & Sons. This book was released on 2011-09-15 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.
Download or read book Optimization Models written by Giuseppe C. Calafiore and published by Cambridge University Press. This book was released on 2014-10-31 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
Download or read book Optimization Techniques and Applications with Examples written by Xin-She Yang and published by John Wiley & Sons. This book was released on 2018-09-19 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
Download or read book Algorithms written by Sanjoy Dasgupta and published by McGraw-Hill Higher Education. This book was released on 2006 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text DasGupta also offers a Solutions Manual which is available on the Online Learning Center."Algorithms is an outstanding undergraduate text equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel it is a joy to read." Tim Roughgarden Stanford University
Download or read book Progress in Mathematical Programming written by Nimrod Megiddo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
Download or read book Fuzzy Linear Programming Solution Techniques and Applications written by Seyed Hadi Nasseri and published by Springer. This book was released on 2019-05-29 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the necessary and essential backgrounds of fuzzy set theory and linear programming, particularly a broad range of common Fuzzy Linear Programming (FLP) models and related, convenient solution techniques. These models and methods belong to three common classes of fuzzy linear programming, namely: (i) FLP problems in which all coefficients are fuzzy numbers, (ii) FLP problems in which the right-hand-side vectors and the decision variables are fuzzy numbers, and (iii) FLP problems in which the cost coefficients, the right-hand-side vectors and the decision variables are fuzzy numbers. The book essentially generalizes the well-known solution algorithms used in linear programming to the fuzzy environment. Accordingly, it can be used not only as a textbook, teaching material or reference book for undergraduate and graduate students in courses on applied mathematics, computer science, management science, industrial engineering, artificial intelligence, fuzzy information processes, and operations research, but can also serve as a reference book for researchers in these fields, especially those engaged in optimization and soft computing. For textbook purposes, it also includes simple and illustrative examples to help readers who are new to the field.
Download or read book Linear Programming written by Robert J Vanderbei and published by Springer Science & Business Media. This book was released on 2013-07-16 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.
Download or read book Integer Programming and Related Areas written by C. Kastning and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integer Prograw~ing is one of the most fascinating and difficult areas in the field of Mathematical Optimization. Due to this fact notable research contributions to Integer Programming have been made in very different branches of mathematics and its applications. Since these publications are scattered over many journals, proceedings volumes, monographs, and working papers, a comprehensive bibliography of all these sources is a helpful tool even for specialists in this field. I initiated this compilation of literature in 1970 at the Institut fur ~konometrie und Operations Research, University of Bonn. Since then many collaborators have contributed to and worked on it. Among them Dipl.-Math. Claus Kastning has done the bulk of the work. With great perseverance and diligence he has gathered all the material and checked it with the original sources. The main aim was to incorporate rare and not easily accessible sources like Russian journals, preprints or unpublished papers. Without the invaluable and dedicated engagement of Claus Kastning the bibliography would never have reached this final version. For this reason he must be considered its responsible editor. As with any other collection this literature list has a subjective viewpoint and may be in some sense incomplete. We have however tried to be as complete as possible. The bibliography contains 4704 different publications by 6767 authors which were classified by 11839 descriptor entries.
Download or read book Iterative Methods in Combinatorial Optimization written by Lap Chi Lau and published by Cambridge University Press. This book was released on 2011-04-18 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Download or read book Linear Programming and Network Flows written by Mokhtar S. Bazaraa and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Programming and Network Flows, now in its third edition, addresses the problem of minimizing or maximizing a linear function in the presence of linear equality or inequility constraints. This book: * Provides methods for modeling complex problems via effective algorithms on modern computers. * Presents the general theory and characteristics of optimization problems, along with effective solution algorithms. * Explores linear programming (LP) and network flows, employing polynomial-time algorithms and various specializations of the simplex method.
Download or read book Linear Programming Computation written by Ping-Qi PAN and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: With emphasis on computation, this book is a real breakthrough in the field of LP. In addition to conventional topics, such as the simplex method, duality, and interior-point methods, all deduced in a fresh and clear manner, it introduces the state of the art by highlighting brand-new and advanced results, including efficient pivot rules, Phase-I approaches, reduced simplex methods, deficient-basis methods, face methods, and pivotal interior-point methods. In particular, it covers the determination of the optimal solution set, feasible-point simplex method, decomposition principle for solving large-scale problems, controlled-branch method based on generalized reduced simplex framework for solving integer LP problems.
Download or read book Integer Linear Programming in Computational and Systems Biology written by Dan Gusfield and published by Cambridge University Press. This book was released on 2019-06-13 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique.
Download or read book Deterministic Operations Research written by David J. Rader and published by John Wiley & Sons. This book was released on 2013-06-07 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Download or read book Optimization Techniques and Associated Applications written by Sandeep Singh and published by CRC Press. This book was released on 2024-11-13 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, the techniques of operation research are widely used in every aspect of day-to-day life. This book discusses a variety of problems that arise in various businesses and develops mathematical theories as well as technology answers to solve them from an industry perspective. Optimization Techniques and Associated Applications incorporates cutting-edge methods for locating early workable answers to an optimization challenge and acts as a road map for creating a catastrophe management paradigm that is sustainable. This book offers numerical methods for resolving mathematical issues that can be found in numerous sectors and includes specific case studies of actual industrial optimization applications. The uncertainty that arises in various businesses is explored and new and recently developed techniques are discussed. Because this book primarily focuses on operations research and solutions to the challenges across a variety of disciplines, the audience is expansive and can include professionals, students, and researchers from mathematics as well as engineers from industrial engineering, computer science, information technology, mechanical, civil, electrical, petroleum, chemical, aerospace, aviation, meteorology, disaster management, and other departments.
Download or read book Understanding and Using Linear Programming written by Jiri Matousek and published by Springer Science & Business Media. This book was released on 2007-07-04 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".