Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Download or read book Differential Equations Linear Algebra written by Michael D. Greenberg and published by . This book was released on 2001 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a mathematician/engineer/scientist author who brings all three perspectives to the book. This volume offers an extremely easy-to-read and easy-to-comprehend exploration of both ordinary differential equations and linear algebra--motivated throughout by high-quality applications to science and engineering. Features many optional sections and subsections that allow topics to be covered comprehensively, moderately, or minimally, and includes supplemental coverage of Maple at the end of most sections. For anyone interested in Differential Equations and Linear Algebra.
Download or read book Galois Theory of Linear Differential Equations written by Marius van der Put and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Download or read book Dynamical Systems and Linear Algebra written by Fritz Colonius and published by American Mathematical Society. This book was released on 2014-10-03 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book Notes on Diffy Qs written by Jiri Lebl and published by . This book was released on 2019-11-13 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Download or read book Differential Equations From Calculus to Dynamical Systems Second Edition written by Virginia W. Noonburg and published by American Mathematical Soc.. This book was released on 2020-08-28 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.
Download or read book The Oxford Linear Algebra for Scientists written by Andre Lukas and published by Oxford University Press. This book was released on 2022-07-09 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a modern introduction to linear algebra, a mathematical discipline every first year undergraduate student in physics and engineering must learn. A rigorous introduction into the mathematics is combined with many examples, solved problems, and exercises as well as scientific applications of linear algebra. These include applications to contemporary topics such as internet search, artificial intelligence, neural networks, and quantum computing, as well as a number of more advanced topics, such as Jordan normal form, singular value decomposition, and tensors, which will make it a useful reference for a more experienced practitioner. Structured into 27 chapters, it is designed as a basis for a lecture course and combines a rigorous mathematical development of the subject with a range of concisely presented scientific applications. The main text contains many examples and solved problems to help the reader develop a working knowledge of the subject and every chapter comes with exercises.
Download or read book Differential Equations and Their Applications written by M. Braun and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.
Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Download or read book CK 12 Calculus written by CK-12 Foundation and published by CK-12 Foundation. This book was released on 2010-08-15 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: CK-12 Foundation's Single Variable Calculus FlexBook introduces high school students to the topics covered in the Calculus AB course. Topics include: Limits, Derivatives, and Integration.
Download or read book Computational Differential Equations written by Kenneth Eriksson and published by Cambridge University Press. This book was released on 1996-09-05 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.
Download or read book Handbook of Linear Partial Differential Equations for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2015-12-23 with total page 1623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition contains nearly 4,000 linear partial differential equations (PDEs) with solutions as well as analytical, symbolic, and numerical methods for solving linear equations. First-, second-, third-, fourth-, and higher-order linear equations and systems of coupled equations are considered. Equations of parabolic, mixed, and other types are discussed. New linear equations, exact solutions, transformations, and methods are described. Formulas for effective construction of solutions are given. Boundary value and eigenvalue problems are addressed. Symbolic and numerical methods for solving PDEs with Maple, Mathematica, and MATLAB are explored.
Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Download or read book Handbook of Linear Algebra written by Leslie Hogben and published by CRC Press. This book was released on 2006-11-02 with total page 1402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessibl
Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
Download or read book A First Course in Differential Equations written by J. David Logan and published by Springer Science & Business Media. This book was released on 2006-05-20 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Therearemanyexcellenttextsonelementarydi?erentialequationsdesignedfor the standard sophomore course. However, in spite of the fact that most courses are one semester in length, the texts have evolved into calculus-like pres- tations that include a large collection of methods and applications, packaged with student manuals, and Web-based notes, projects, and supplements. All of this comes in several hundred pages of text with busy formats. Most students do not have the time or desire to read voluminous texts and explore internet supplements. The format of this di?erential equations book is di?erent; it is a one-semester, brief treatment of the basic ideas, models, and solution methods. Itslimitedcoverageplacesitsomewherebetweenanoutlineandadetailedte- book. I have tried to write concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying di?erential eq- tions to problems in engineering, science, and applied mathematics. It can give some instructors, who want more concise coverage, an alternative to existing texts.