EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Least Squares Data Fitting with Applications

Download or read book Least Squares Data Fitting with Applications written by Per Christian Hansen and published by JHU Press. This book was released on 2013-01-15 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lucid explanation of the intricacies of both simple and complex least squares methods. As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems. Included are • an overview of computational methods together with their properties and advantages • topics from statistical regression analysis that help readers to understand and evaluate the computed solutions • many examples that illustrate the techniques and algorithms Least Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.

Book Data Fitting and Uncertainty

Download or read book Data Fitting and Uncertainty written by Tilo Strutz and published by Springer Vieweg. This book was released on 2015-12-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of data fitting bridges many disciplines, especially those traditionally dealing with statistics like physics, mathematics, engineering, biology, economy, or psychology, but also more recent fields like computer vision. This book addresses itself to engineers and computer scientists or corresponding undergraduates who are interested in data fitting by the method of least-squares approximation, but have no or only limited pre-knowledge in this field. Experienced readers will find in it new ideas or might appreciate the book as a useful work of reference. Familiarity with basic linear algebra is helpful though not essential as the book includes a self-contained introduction and presents the method in a logical and accessible fashion. The primary goal of the text is to explain how data fitting via least squares works. The reader will find that the emphasis of the book is on practical matters, not on theoretical problems. In addition, the book enables the reader to design own software implementations with application-specific model functions based on the comprehensive discussion of several examples. The text is accompanied with working source code in ANSI-C for fitting with weighted least squares including outlier detection. Among others the book covers following topics * fitting of linear and nonlinear functions with one- or multi-dimensional variables * weighted least-squares * outlier detection * evaluation of the fitting results * different optimisation strategies * combined fitting of different model functions * total least-squares approach with multi-dimensional conditions

Book Exponential Data Fitting and Its Applications

Download or read book Exponential Data Fitting and Its Applications written by Victor Pereyra and published by Bentham Science Publishers. This book was released on 2010 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Real and complex exponential data fitting is an important activity in many different areas of science and engineering, ranging from Nuclear Magnetic Resonance Spectroscopy and Lattice Quantum Chromodynamics to Electrical and Chemical Engineering, Vision a"

Book Numerical Methods for Least Squares Problems

Download or read book Numerical Methods for Least Squares Problems written by Ake Bjorck and published by SIAM. This book was released on 1996-01-01 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.

Book Data Analysis Using the Method of Least Squares

Download or read book Data Analysis Using the Method of Least Squares written by John Wolberg and published by Springer Science & Business Media. This book was released on 2006-02-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods

Book Data Fitting in the Chemical Sciences

Download or read book Data Fitting in the Chemical Sciences written by Peter Gans and published by John Wiley & Sons. This book was released on 1992-07-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Fitting in the Chemical Sciences Peter Gans, School of Chemistry, The University of Leeds, Leeds, UK Data fitting is a technique of central importance in modern experimental science. It is the means by which data is tested against a model of the experimental system, be it a theoretical or empirical model. In this book an all-round approach is adopted in which the first stage of data-fitting is seen as data collection, the second is numerical processing and the third a critical evaluation of the 'goodness' of fit in both statistical and common sense terms. Each stage is considered in detail: the sources and nature of experimental errors; the theory of least-squares fitting; probability theory; hypothesis testing, and the application of scientific criteria. The theory is complemented by three chapters on a wide range of applications. The emphasis of this book is on methodology: why certain procedures are preferred rather than how any one procedure is implemented. The author aims to assist people in extracting from their data its full information content, i.e. to use their data, not abuse it.

Book The Total Least Squares Problem

Download or read book The Total Least Squares Problem written by Sabine Van Huffel and published by SIAM. This book was released on 1991-01-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.

Book OpenIntro Statistics

    Book Details:
  • Author : David Diez
  • Publisher :
  • Release : 2015-07-02
  • ISBN : 9781943450046
  • Pages : pages

Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.

Book Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space

Download or read book Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space written by Sung Joon Ahn and published by Springer Science & Business Media. This book was released on 2004-12-07 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the continuing progress of sensor technology, the availability of 3-D cameras is already foreseeable. These cameras are capable of generating a large set of measurement points within a very short time. There are a variety of 3-D camera applications in the fields of robotics, rapid product development and digital factories. In order to not only visualize the point cloud but also to recognize 3-D object models from the point cloud and then further process them in CAD systems, efficient and stable algorithms for 3-D information processing are required. For the automatic segmentation and recognition of such geometric primitives as plane, sphere, cylinder, cone and torus in a 3-D point cloud, efficient software has recently been developed at the Fraunhofer IPA by Sung Joon Ahn. This book describes in detail the complete set of ‘best-?t’ algorithms for general curves and surfaces in space which are employed in the Fraunhofer software.

Book IPython Interactive Computing and Visualization Cookbook

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Book Total Least Squares and Errors in Variables Modeling

Download or read book Total Least Squares and Errors in Variables Modeling written by S. van Huffel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.

Book Fitting Models to Biological Data Using Linear and Nonlinear Regression

Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Book Circular and Linear Regression

Download or read book Circular and Linear Regression written by Nikolai Chernov and published by CRC Press. This book was released on 2010-06-22 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and comput

Book Solving Least Squares Problems

Download or read book Solving Least Squares Problems written by Charles L. Lawson and published by SIAM. This book was released on 1995-12-01 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.

Book Regression Analysis

    Book Details:
  • Author : Ashish Sen
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461244706
  • Pages : 361 pages

Download or read book Regression Analysis written by Ashish Sen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, rigorous, and lucid treatment of the theory, methods, and applications of regression analysis, and thus ideally suited for those interested in the theory as well as those whose interests lie primarily with applications. It is further enhanced through real-life examples drawn from many disciplines, showing the difficulties typically encountered in the practice of regression analysis. Consequently, this book provides a sound foundation in the theory of this important subject.

Book Linear Models in Statistics

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Book Numerical Data Fitting in Dynamical Systems

Download or read book Numerical Data Fitting in Dynamical Systems written by Klaus Schittkowski and published by Springer Science & Business Media. This book was released on 2002-12-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.