Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.
Download or read book Deep Learning for Remote Sensing Images with Open Source Software written by Rémi Cresson and published by CRC Press. This book was released on 2020-07-15 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Download or read book Learning to Understand Remote Sensing Images written by Qi Wang and published by MDPI. This book was released on 2019-09-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.
Download or read book Introduction to Remote Sensing Fifth Edition written by James B. Campbell and published by Guilford Press. This book was released on 2011-06-15 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been replaced by Introduction to Remote Sensing, Sixth Edition, 978-1-4625-4940-5.
Download or read book Remote Sensing with Imaging Radar written by John A. Richards and published by Springer Science & Business Media. This book was released on 2009-10-08 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with remote sensing based on the technology of imaging radar. It assumes no prior knowledge of radar on the part of the reader, commencing with a treatment of the essential concepts of microwave imaging and progressing through to the development of multipolarisation and interferometric radar, modes which underpin contemporary applications of the technology. The use of radar for imaging the earth’s surface and its resources is not recent. Aircraft-based microwave systems were operating in the 1960s, ahead of optical systems that image in the visible and infrared regions of the spectrum. Optical remote sensing was given a strong impetus with the launch of the first of the Landsat series of satellites in the mid 1970s. Although the Seasat satellite launched in the same era (1978) carried an imaging radar, it operated only for about 12 months and there were not nearly so many microwave systems as optical platforms in service during the 1980s. As a result, the remote sensing community globally tended to develop strongly around optical imaging until Shuttle missions in the early to mid 1980s and free-flying imaging radar satellites in the early to mid 1990s became available, along with several sophisticated aircraft platforms. Since then, and particularly with the unique capabilities and flexibility of imaging radar, there has been an enormous surge of interest in microwave imaging technology. Unlike optical imaging, understanding the theoretical underpinnings of imaging radar can be challenging, particularly when new to the field.
Download or read book Interpreting Remote Sensing Imagery written by Robert R. Hoffman and published by CRC Press. This book was released on 2019-06-12 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: No matter how advanced the technology, there is always the human factor involved - the power behind the technology. Interpreting Remote Sensing Imagery: Human Factors draws together leading psychologists, remote sensing scientists, and government and industry scientists to consider the factors involved in expertise and perceptual skill. This boo
Download or read book Advances in Mapping from Remote Sensor Imagery written by Xiaojun Yang and published by CRC Press. This book was released on 2012-12-12 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Mapping from Remote Sensor Imagery: Techniques and Applications reviews some of the latest developments in remote sensing and information extraction techniques applicable to topographic and thematic mapping. Providing an interdisciplinary perspective, leading experts from around the world have contributed chapters examining state-of-the-art techniques as well as widely used methods. The book covers a broad range of topics including photogrammetric mapping and LiDAR remote sensing for generating high quality topographic products, global digital elevation models, current methods for shoreline mapping, and the identification and classification of residential buildings. Contributors also showcase cutting-edge developments for environmental and ecological mapping, including assessment of urbanization patterns, mapping vegetation cover, monitoring invasive species, and mapping marine oil spills—crucial for monitoring this significant environmental hazard. The authors exemplify the information presented in this text with case studies from around the world. Examples include: Envisat/ERS-2 images used to generate digital elevation models over northern Alaska In situ radiometric observations and MERIS images employed to retrieve chlorophyll a concentration in inland waters in Australia ERS-1/2 SAR images utilized to map spatiotemporal deformation in the southwestern United States Aerospace sensors and related information extraction techniques that support various mapping applications have recently garnered more attention due to the advances in remote sensing theories and technologies. This book brings together top researchers in the field, providing a state-of-the-art review of some of the latest advancements in remote sensing and mapping technologies.
Download or read book Remote Sensing written by Robert A. Schowengerdt and published by Elsevier. This book was released on 2012-12-02 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Download or read book Remote Sensing Digital Image Analysis written by John A. Richards and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.
Download or read book Fundamentals of Satellite Remote Sensing written by Emilio Chuvieco and published by CRC Press. This book was released on 2016-02-24 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Satellite Remote Sensing: An Environmental Approach, Second Edition is a definitive guide to remote sensing systems that focuses on satellite-based remote sensing tools and methods for space-based Earth observation (EO). It presents the advantages of using remote sensing data for studying and monitoring the planet, and emphasizes co
Download or read book Deep Learning for the Earth Sciences written by Gustau Camps-Valls and published by John Wiley & Sons. This book was released on 2021-08-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Download or read book Fuzzy Machine Learning Algorithms for Remote Sensing Image Classification written by Anil Kumar and published by CRC Press. This book was released on 2020-07-19 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy machine learning and deep learning algorithms. Both types of algorithms are described in such details that these can be implemented directly for thematic mapping of multiple-class or specific-class landcover from multispectral optical remote sensing data. These algorithms along with multi-date, multi-sensor remote sensing are capable to monitor specific stage (for e.g., phenology of growing crop) of a particular class also included. With these capabilities fuzzy machine learning algorithms have strong applications in areas like crop insurance, forest fire mapping, stubble burning, post disaster damage mapping etc. It also provides details about the temporal indices database using proposed Class Based Sensor Independent (CBSI) approach supported by practical examples. As well, this book addresses other related algorithms based on distance, kernel based as well as spatial information through Markov Random Field (MRF)/Local convolution methods to handle mixed pixels, non-linearity and noisy pixels. Further, this book covers about techniques for quantiative assessment of soft classified fraction outputs from soft classification and supported by in-house developed tool called sub-pixel multi-spectral image classifier (SMIC). It is aimed at graduate, postgraduate, research scholars and working professionals of different branches such as Geoinformation sciences, Geography, Electrical, Electronics and Computer Sciences etc., working in the fields of earth observation and satellite image processing. Learning algorithms discussed in this book may also be useful in other related fields, for example, in medical imaging. Overall, this book aims to: exclusive focus on using large range of fuzzy classification algorithms for remote sensing images; discuss ANN, CNN, RNN, and hybrid learning classifiers application on remote sensing images; describe sub-pixel multi-spectral image classifier tool (SMIC) to support discussed fuzzy and learning algorithms; explain how to assess soft classified outputs as fraction images using fuzzy error matrix (FERM) and its advance versions with FERM tool, Entropy, Correlation Coefficient, Root Mean Square Error and Receiver Operating Characteristic (ROC) methods and; combines explanation of the algorithms with case studies and practical applications.
Download or read book Introduction to the Physics and Techniques of Remote Sensing written by Charles Elachi and published by John Wiley & Sons. This book was released on 2006-05-11 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The science and engineering of remote sensing--theory and applications The Second Edition of this authoritative book offers readers the essential science and engineering foundation needed to understand remote sensing and apply it in real-world situations. Thoroughly updated to reflect the tremendous technological leaps made since the publication of the first edition, this book covers the gamut of knowledge and skills needed to work in this dynamic field, including: * Physics involved in wave-matter interaction, the building blocks for interpreting data * Techniques used to collect data * Remote sensing applications The authors have carefully structured and organized the book to introduce readers to the basics, and then move on to more advanced applications. Following an introduction, Chapter 2 sets forth the basic properties of electromagnetic waves and their interactions with matter. Chapters 3 through 7 cover the use of remote sensing in solid surface studies, including oceans. Each chapter covers one major part of the electromagnetic spectrum (e.g., visible/near infrared, thermal infrared, passive microwave, and active microwave). Chapters 8 through 12 then cover remote sensing in the study of atmospheres and ionospheres. Each chapter first presents the basic interaction mechanism, followed by techniques to acquire, measure, and study the information, or waves, emanating from the medium under investigation. In most cases, a specific advanced sensor is used for illustration. The book is generously illustrated with fifty percent new figures. Numerous illustrations are reproduced in a separate section of color plates. Examples of data acquired from spaceborne sensors are included throughout. Finally, a set of exercises, along with a solutions manual, is provided. This book is based on an upper-level undergraduate and first-year graduate course taught by the authors at the California Institute of Technology. Because of the multidisciplinary nature of the field and its applications, it is appropriate for students in electrical engineering, applied physics, geology, planetary science, astronomy, and aeronautics. It is also recommended for any engineer or scientist interested in working in this exciting field.
Download or read book Image Processing for Remote Sensing written by C.H. Chen and published by CRC Press. This book was released on 2007-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for
Download or read book Image Registration for Remote Sensing written by Jacqueline Le Moigne and published by Cambridge University Press. This book was released on 2011-03-24 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a summary of current research in the application of image registration to satellite imagery. Presenting algorithms for creating mosaics and tracking changes on the planet's surface over time, it is an indispensable resource for researchers and advanced students in Earth and space science, and image processing.
Download or read book Remote Sensing Image Fusion written by Christine Pohl and published by CRC Press. This book was released on 2016-10-03 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Remote Sensing Image Fusion: A Practical Guide gives an introduction to remote sensing image fusion providing an overview on the sensors and applications. It describes data selection, application requirements and the choice of a suitable image fusion technique. It comprises a diverse selection of successful image fusion cases that are relevant to other users and other areas of interest around the world. The book helps newcomers to obtain a quick start into the practical value and benefits of multi-sensor image fusion. Experts will find this book useful to obtain an overview on the state of the art and understand current constraints that need to be solved in future research efforts. For industry professionals the book can be a great introduction and basis to understand multisensor remote sensing image exploitation and the development of commercialized image fusion software from a practical perspective. The book concludes with a chapter on current trends and future developments in remote sensing image fusion. Along with the book, RSIF website provides additional up-to-date information in the field.
Download or read book Fundamentals of Remote Sensing written by George Joseph and published by Universities Press. This book was released on 2005 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamental concepts covering various stages of remote sensing from data collection to end utilization, so that it can be appreciated irrespective of the discipline in which the reader has graduated. The physical principles on which remote sensing are based has been explained without getting into complicated mathematical equations.