Download or read book Probabilistic Methods for Financial and Marketing Informatics written by Richard E. Neapolitan and published by Elsevier. This book was released on 2010-07-26 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and using the software package Netica to represent and solve problems. The book contains unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance. It shares insights about when and why probabilistic methods can and cannot be used effectively. This book is recommended for all R&D professionals and students who are involved with industrial informatics, that is, applying the methodologies of computer science and engineering to business or industry information. This includes computer science and other professionals in the data management and data mining field whose interests are business and marketing information in general, and who want to apply AI and probabilistic methods to their problems in order to better predict how well a product or service will do in a particular market, for instance. Typical fields where this technology is used are in advertising, venture capital decision making, operational risk measurement in any industry, credit scoring, and investment science. - Unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance - Shares insights about when and why probabilistic methods can and cannot be used effectively - Complete review of Bayesian networks and probabilistic methods for those IT professionals new to informatics.
Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 1740 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.
Download or read book Gene Network Inference written by Alberto Fuente and published by Springer Science & Business Media. This book was released on 2014-01-03 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians.
Download or read book Probabilistic Boolean Networks written by Ilya Shmulevich and published by SIAM. This book was released on 2010-01-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.
Download or read book Pulsed Neural Networks written by Wolfgang Maass and published by MIT Press. This book was released on 2001-01-26 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador
Download or read book Learning Bayesian Networks written by Richard E. Neapolitan and published by Prentice Hall. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R
Download or read book Bayesian Networks in R written by Radhakrishnan Nagarajan and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.
Download or read book Computational Science and Its Applications ICCSA 2018 written by Osvaldo Gervasi and published by Springer. This book was released on 2018-07-03 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five volume set LNCS 10960 until 10964 constitutes the refereed proceedings of the 18th International Conference on Computational Science and Its Applications, ICCSA 2018, held in Melbourne, Australia, in July 2018. Apart from the general tracks, ICCSA 2018 also includes 34 international workshops in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality. The total of 265 full papers and 10 short papers presented in the 5-volume proceedings set of ICCSA 2018, were carefully reviewed and selected from 892 submissions.
Download or read book Introduction to Bayesian Networks written by Finn V. Jensen and published by Springer. This book was released on 1997-08-15 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disk contains: Tool for building Bayesian networks -- Library of examples -- Library of proposed solutions to some exercises.
Download or read book Handbook of Research on Computational Methodologies in Gene Regulatory Networks written by Das, Sanjoy and published by IGI Global. This book was released on 2009-10-31 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on methods widely used in modeling gene networks including structure discovery, learning, and optimization"--Provided by publisher.
Download or read book Emerging Trends in Applications and Infrastructures for Computational Biology Bioinformatics and Systems Biology written by Hamid R Arabnia and published by Morgan Kaufmann. This book was released on 2016-03-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications covers the latest trends in the field with special emphasis on their applications. The first part covers the major areas of computational biology, development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques for the study of biological and behavioral systems. The second part covers bioinformatics, an interdisciplinary field concerned with methods for storing, retrieving, organizing, and analyzing biological data. The book also explores the software tools used to generate useful biological knowledge. The third part, on systems biology, explores how to obtain, integrate, and analyze complex datasets from multiple experimental sources using interdisciplinary tools and techniques, with the final section focusing on big data and the collection of datasets so large and complex that it becomes difficult to process using conventional database management systems or traditional data processing applications. Explores all the latest advances in this fast-developing field from an applied perspective Provides the only coherent and comprehensive treatment of the subject available Covers the algorithm development, software design, and database applications that have been developed to foster research
Download or read book Bayesian Inference for Gene Expression and Proteomics written by Kim-Anh Do and published by Cambridge University Press. This book was released on 2006-07-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.
Download or read book Bayesian Networks written by Olivier Pourret and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.
Download or read book Drosophila Eye Development written by Kevin Moses and published by Springer Science & Business Media. This book was released on 2002-03-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
Download or read book Wireless Sensor Networks written by Feng Zhao and published by Morgan Kaufmann. This book was released on 2004-07-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Mathematical Foundations of Computer Science written by Peter Ružička and published by . This book was released on 2002 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: