Download or read book Latent Class and Latent Transition Analysis written by Linda M. Collins and published by John Wiley & Sons. This book was released on 2013-05-20 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a "Points to Remember" section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.
Download or read book Latent Class and Latent Transition Analysis written by Linda M. Collins and published by John Wiley & Sons. This book was released on 2009-12-14 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a "Points to Remember" section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.
Download or read book Applied Latent Class Analysis written by Jacques A. Hagenaars and published by Cambridge University Press. This book was released on 2002-06-24 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Latent Class Analysis introduces several innovations in latent class analysis to a wider audience of researchers. Many of the world's leading innovators in the field of latent class analysis contributed essays to this volume, each presenting a key innovation to the basic latent class model and illustrating how it can prove useful in situations typically encountered in actual research.
Download or read book Loglinear Models with Latent Variables written by Jacques A. Hagenaars and published by SAGE. This book was released on 1993-08-09 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the loglinear model has become the dominant form of categorical data analysis as researchers have expanded it into new directions. This book shows researchers the applications of one of these new developments - how uniting ordinary loglinear analysis and latent class analysis into a general loglinear model with latent variables can result in a modified LISREL approach. This modified LISREL model will enable researchers to analyze categorical data in the same way that they have been able to use LISREL to analyze continuous data.
Download or read book Modern Statistical Methods for HCI written by Judy Robertson and published by Springer. This book was released on 2016-03-22 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event history analysis, non-parametric testing and Bayesian inference; the research contained in this book discusses how to communicate statistical results fairly, as well as presenting a general set of recommendations for authors and reviewers to improve the quality of statistical analysis in HCI. Each chapter presents [R] code for running analyses on HCI examples and explains how the results can be interpreted. Modern Statistical Methods for HCI is aimed at researchers and graduate students who have some knowledge of “traditional” null hypothesis significance testing, but who wish to improve their practice by using techniques which have recently emerged from statistics and related fields. This book critically evaluates current practices within the field and supports a less rigid, procedural view of statistics in favour of fair statistical communication.
Download or read book SAS and R written by Ken Kleinman and published by CRC Press. This book was released on 2014-07-17 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.
Download or read book The Reviewer s Guide to Quantitative Methods in the Social Sciences written by Gregory R. Hancock and published by Routledge. This book was released on 2010-04-26 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.
Download or read book Time Varying Effect Modeling for the Behavioral Social and Health Sciences written by Stephanie T. Lanza and published by Springer Nature. This book was released on 2021-05-06 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to introduce applied behavioral, social, and health sciences researchers to a new analytic method, the time-varying effect model (TVEM). It details how TVEM may be used to advance research on developmental and dynamic processes by examining how associations between variables change across time. The book describes how TVEM is a direct and intuitive extension of standard linear regression; whereas standard linear regression coefficients are static estimates that do not change with time, TVEM coefficients are allowed to change as continuous functions of real time, including developmental age, historical time, time of day, days since an event, and so forth. The book introduces readers to new research questions that can be addressed by applying TVEM in their research. Readers gain the practical skills necessary for specifying a wide variety of time-varying effect models, including those with continuous, binary, and count outcomes. The book presents technical details of TVEM estimation and three novel empirical studies focused on developmental questions using TVEM to estimate age-varying effects, historical shifts in behavior and attitudes, and real-time changes across days relative to an event. The volume provides a walkthrough of the process for conducting each of these studies, presenting decisions that were made, and offering sufficient detail so that readers may embark on similar studies in their own research. The book concludes with comments about additional uses of TVEM in applied research as well as software considerations and future directions. Throughout the book, proper interpretation of the output provided by TVEM is emphasized. Time-Varying Effect Modeling for the Behavioral, Social, and Health Sciences is an essential resource for researchers, clinicians/practitioners as well as graduate students in developmental psychology, public health, statistics and methodology for the social, behavioral, developmental, and public health sciences.
Download or read book Advances in Latent Variable Mixture Models written by Gregory R. Hancock and published by IAP. This book was released on 2007-11-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.
Download or read book Latent Markov Models for Longitudinal Data written by Francesco Bartolucci and published by CRC Press. This book was released on 2012-10-29 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing on the authors' extensive research in the analysis of categorical longitudinal data, this book focuses on the formulation of latent Markov models and the practical use of these models. It demonstrates how to use the models in three types of analysis, with numerous examples illustrating how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB routines used for the examples are available on the authors' website.
Download or read book Structural Equation Modeling written by Jichuan Wang and published by John Wiley & Sons. This book was released on 2019-09-17 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
Download or read book The Oxford Handbook of Quantitative Methods Vol 2 Statistical Analysis written by Todd D. Little and published by Oxford University Press. This book was released on 2013-02-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.
Download or read book Advances in Latent Class Analysis written by Gregory R. Hancock and published by IAP. This book was released on 2019-05-01 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is latent class analysis? If you asked that question thirty or forty years ago you would have gotten a different answer than you would today. Closer to its time of inception, latent class analysis was viewed primarily as a categorical data analysis technique, often framed as a factor analysis model where both the measured variable indicators and underlying latent variables are categorical. Today, however, it rests within much broader mixture and diagnostic modeling framework, integrating measured and latent variables that may be categorical and/or continuous, and where latent classes serve to define the subpopulations for whom many aspects of the focal measured and latent variable model may differ. For latent class analysis to take these developmental leaps required contributions that were methodological, certainly, as well as didactic. Among the leaders on both fronts was C. Mitchell “Chan” Dayton, at the University of Maryland, whose work in latent class analysis spanning several decades helped the method to expand and reach its current potential. The current volume in the Center for Integrated Latent Variable Research (CILVR) series reflects the diversity that is latent class analysis today, celebrating work related to, made possible by, and inspired by Chan’s noted contributions, and signaling the even more exciting future yet to come.
Download or read book Acquisition of Complex Arithmetic Skills and Higher Order Mathematics Concepts written by David C. Geary and published by Academic Press. This book was released on 2017-08-01 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
Download or read book Latent Curve Models written by Kenneth A. Bollen and published by John Wiley & Sons. This book was released on 2005-12-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.
Download or read book Advances in Data Analysis for Prevention Intervention Research written by and published by . This book was released on 1994 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Analysis with Mplus written by Christian Geiser and published by Guilford Press. This book was released on 2012-11-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction to using Mplus for the analysis of multivariate data, this volume provides step-by-step guidance, complete with real data examples, numerous screen shots, and output excerpts. The author shows how to prepare a data set for import in Mplus using SPSS. He explains how to specify different types of models in Mplus syntax and address typical caveats--for example, assessing measurement invariance in longitudinal SEMs. Coverage includes path and factor analytic models as well as mediational, longitudinal, multilevel, and latent class models. Specific programming tips and solution strategies are presented in boxes in each chapter. The companion website (http://crmda.ku.edu/guilford/geiser) features data sets, annotated syntax files, and output for all of the examples. Of special utility to instructors and students, many of the examples can be run with the free demo version of Mplus.