EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Special Topics in Earthquake Geotechnical Engineering

Download or read book Special Topics in Earthquake Geotechnical Engineering written by Mohamed A. Sakr and published by Springer Science & Business Media. This book was released on 2012-03-20 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geotechnical Earthquake Engineering and Soil Dynamics, as well as their interface with Engineering Seismology, Geophysics and Seismology, have all made remarkable progress over the past 15 years, mainly due to the development of instrumented large scale experimental facilities, to the increase in the quantity and quality of recorded earthquake data, to the numerous well-documented case studies from recent strong earthquakes as well as enhanced computer capabilities. One of the major factors contributing to the aforementioned progress is the increasing social need for a safe urban environment, large infrastructures and essential facilities. The main scope of our book is to provide the geotechnical engineers, geologists and seismologists, with the most recent advances and developments in the area of earthquake geotechnical engineering, seismology and soil dynamics.

Book Canadian Geotechnical Journal

Download or read book Canadian Geotechnical Journal written by National Research Council Canada and published by . This book was released on 1997 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geotechnical Earthquake Engineering and Soil Dynamics III

Download or read book Geotechnical Earthquake Engineering and Soil Dynamics III written by Robert D. Holtz and published by . This book was released on 1998 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Response of Concrete Bridges

Download or read book Seismic Response of Concrete Bridges written by Kosalram Krishnan and published by . This book was released on 1999 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Passive Pressure on Abutments and Pile Caps

Download or read book Dynamic Passive Pressure on Abutments and Pile Caps written by and published by . This book was released on 2010 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental and Analytical Investigation of Seismic Bridge abutment Interaction in a Curved Highway Bridge

Download or read book Experimental and Analytical Investigation of Seismic Bridge abutment Interaction in a Curved Highway Bridge written by Joseph Wieser and published by . This book was released on 2014 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seat-type bridge abutments are most commonly used to support the end spans of curved highway bridges. This type of abutment is often selected to eliminate unbalanced stresses in the superstructure under service loads, in particular thermal expansion and contraction. However, depending on the width of the expansion gap, large earthquakes may cause the expansion gap to close which results in bridge-abutment interaction. This phenomenon was studied in a federally-funded research project examining the seismic performance of curved highway bridges at the University of Nevada, Reno. As a part of this research a 2/5 th scale model of a 3-span curved steel girder bridge was constructed on four multi-degree-of-freedom shake tables. Two configurations of the bridge one without bridge-abutment interaction and one with nonlinear bridge-abutment interaction were tested. The purpose of these tests was to: (i) identify the influence of bridge-abutment interaction on the global seismic response of the bridge, (ii) characterize the force-deformation characteristics of dynamic bridge-abutment interaction, and (iii) provide experimental data used to calibrate numerical models of bridges including bridge abutment interaction. Based on the experimental investigation it was concluded that bridge-abutment interaction shortens the effective period of vibration of the bridge, which results in decreased deck displacement and increased total base shear demands. However, the increase in base shear demand is resisted by the abutments which results in a net reduction in column shear demand. Though the deck displacement is reduced at the mid-span of the bridge, the active displacement of the deck at the abutments is increased due to the increased in-plane deck rotation generated as a result of the sudden changes in eccentricity between the center of mass and center of stiffness. The amount of in-plane rotation is shown to depend on the phasing and intensity of the ground motion. Interaction between the bridge and abutment backwall can generate significant radial shear forces through contact friction. These radial forces limit the radial displacement of the bridge while in contact with the backwall particularly after the radial shear keys have failed. However, depending on the details of the abutment backwall local damage may occur. In general, engaging the passive resistance of the backfill soil was able to improve the seismic response of the bridge by reducing damage to the columns and adding an additional form of energy dissipation. Both rigorous 3D finite element and simplified grillage models of the experimental model were validated using available software. Good agreement between the numerical models and the experimental data were obtained using both models however the computational effort was greatly reduced using the simplified grillage model. A grossly simplified 3DOF model of the bridge analyzed using the linear multi-modal response spectrum method was shown to give a prediction of the peak displacement response with minimal complexity. Finally, a parameter study determined that the degree of curvature, size of expansion gap, column diameter, and abutment backfill soil type all influence the response of the bridge. Based on the small scale parameter study conducted herein, bridge designers are encouraged to optimize the combination of expansion gap width with the selection of column diameter to minimize the column and/or abutment soil ductility demands.

Book Guide Specifications for Seismic Isolation Design

Download or read book Guide Specifications for Seismic Isolation Design written by and published by AASHTO. This book was released on 2010 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.

Book AASHTO Guide Specifications for LRFD Seismic Bridge Design

Download or read book AASHTO Guide Specifications for LRFD Seismic Bridge Design written by and published by AASHTO. This book was released on 2011 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.

Book Long Term Behavior of Integral Abutment Bridges

Download or read book Long Term Behavior of Integral Abutment Bridges written by Robert J. Frosch and published by Joint Transportation Research Program. This book was released on 2011-08-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand their applicability, studies were implemented to define limitations supported by rational analysis rather than simply engineering judgment. Previous research investigations have resulted in larger length limits and an overall better understanding of these structures. However, questions still remain regarding IA behavior; specifically questions regarding long-term behavior and effects of skew. To better define the behavior of these structures, a study was implemented to specifically investigate the long term behavior of IA bridges. First, a field monitoring program was implemented to observe and understand the in-service behavior of three integral abutment bridges. The results of the field investigation were used to develop and calibrate analytical models that adequately capture the long-term behavior. Second, a single-span, quarter-scale integral abutment bridge was constructed and tested to provide insight on the behavior of highly skewed structures. From the acquired knowledge from both the field and laboratory investigations, a parametric analysis was conducted to characterize the effects of a broad range of parameters on the behavior of integral abutment bridges. This study develops an improved understanding of the overall behavior of IA bridges. Based on the results of this study, modified length and skew limitations for integral abutment bridge are proposed. In addition, modeling recommendations and guidelines have been developed to aid designers and facilitate the increased use of integral abutment bridges.

Book Geosynthetic Reinforced Soil  GRS  Walls

Download or read book Geosynthetic Reinforced Soil GRS Walls written by Jonathan T. H. Wu and published by John Wiley & Sons. This book was released on 2019-07-10 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.

Book Performance based Seismic Bridge Design

Download or read book Performance based Seismic Bridge Design written by M. Lee Marsh and published by Transportation Research Board. This book was released on 2013 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.

Book Bridge Engineering Handbook

Download or read book Bridge Engineering Handbook written by Wai-Fah Chen and published by CRC Press. This book was released on 2019-09-11 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: First Published in 1999: The Bridge Engineering Handbook is a unique, comprehensive, and state-of-the-art reference work and resource book covering the major areas of bridge engineering with the theme "bridge to the 21st century."

Book Engineering for Structural Stability in Bridge Construction

Download or read book Engineering for Structural Stability in Bridge Construction written by Federal Highway Federal Highway Administration and published by . This book was released on 2020-07-19 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manual is intended to serve as a reference. It will provide technical information which will enable Manual users to perform the following activities:Describe typical erection practices for girder bridge superstructures and recognize critical construction stagesDiscuss typical practices for evaluating structural stability of girder bridge superstructures during early stages of erection and throughout bridge constructionExplain the basic concepts of stability and why it is important in bridge erection* Explain common techniques for performing advanced stability analysis along with their advantages and limitationsDescribe how differing construction sequences effect superstructure stabilityBe able to select appropriate loads, load combinations, and load factors for use in analyzing superstructure components during constructionBe able to analyze bridge members at various stages of erection* Develop erection plans that are safe and economical, and know what information is required and should be a part of those plansDescribe the differences between local, member and global (system) stability

Book Bridge Engineering

Download or read book Bridge Engineering written by W.F. Chen and published by CRC Press. This book was released on 2003-02-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mitigating the effects of earthquakes is crucial to bridge design. With chapters culled from the best-selling Bridge Engineering Handbook, this volume sets forth the principles and applications of seismic design, from the necessary geotechnical and dynamic analysis background to seismic isolation and energy dissipation, active control, and retrofit