EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Iterative and Self adaptive Finite elements in Electromagnetic Modeling

Download or read book Iterative and Self adaptive Finite elements in Electromagnetic Modeling written by Magdalena Salazar-Palma and published by Artech House Publishers. This book was released on 1998 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ensure the accuracy of your results when applying the Finite Element Method (FEM) to electromagnetic and antenna problems with this self-contained reference. It provides you with a solid understanding of the method, describes its key elements and numerical techniques, and identifies various approaches to using the FEM in solving real-world microwave field problems.

Book The Finite Element Method for Electromagnetic Modeling

Download or read book The Finite Element Method for Electromagnetic Modeling written by Gérard Meunier and published by John Wiley & Sons. This book was released on 2010-01-05 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

Book Multigrid Finite Element Methods for Electromagnetic Field Modeling

Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-03-10 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Book A Parallel Goal oriented Adaptive Finite Element Method for 2 5D Electromagnetic Modeling

Download or read book A Parallel Goal oriented Adaptive Finite Element Method for 2 5D Electromagnetic Modeling written by Kerry Key and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a parallel goal-oriented adaptive finite element algorithm that can be used to rapidly compute highly accurate solutions for 2.5D controlled-source electromagnetic (CSEM) and 2D magnetotelluric (MT) modeling problems. We employ unstructured triangular grids to permit efficient discretization of complex modeling domains such as those containing topography, dipping layers and multiple scale structures. Iterative mesh refinement is guided by a goal-oriented error estimator based on a form of dual residual weighting, which is carried out using hierarchical basis computations. Our formulation of the error estimator considers the relative error in the strike aligned fields and their spatial gradients, and therefore results in a more efficient use of mesh vertices than previous error estimators based on absolute field errors. This algorithm is parallelized over frequencies, transmitters, receivers and wave-numbers, where adaptive refinement can be performed in parallel on subsets of these parameters while nearby parameters are able to share the refined grid, thus enabling our algorithm to achieve accurate solutions in run-times of seconds to tens of seconds for realistic models and data parameters when run on cluster computers containing about a thousand processors. Application of this new algorithm to a complex model that includes strong seafloor topography variations and multiple thin stacked reservoirs demonstrates the performance and scalability on a large cluster computer.

Book MATLAB based Finite Element Programming in Electromagnetic Modeling

Download or read book MATLAB based Finite Element Programming in Electromagnetic Modeling written by Özlem Özgün and published by CRC Press. This book was released on 2018-09-03 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

Book Modern Characterization of Electromagnetic Systems and its Associated Metrology

Download or read book Modern Characterization of Electromagnetic Systems and its Associated Metrology written by Tapan K. Sarkar and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: New method for the characterization of electromagnetic wave dynamics Modern Characterization of Electromagnetic Systems introduces a new method of characterizing electromagnetic wave dynamics and measurements based on modern computational and digital signal processing techniques. The techniques are described in terms of both principle and practice, so readers understand what they can achieve by utilizing them. Additionally, modern signal processing algorithms are introduced in order to enhance the resolution and extract information from electromagnetic systems, including where it is not currently possible. For example, the author addresses the generation of non-minimum phase or transient response when given amplitude-only data. Presents modern computational concepts in electromagnetic system characterization Describes a solution to the generation of non-minimum phase from amplitude-only data Covers model-based parameter estimation and planar near-field to far-field transformation as well as spherical near-field to far-field transformation Modern Characterization of Electromagnetic Systems is ideal for graduate students, researchers, and professionals working in the area of antenna measurement and design. It introduces and explains a new process related to their work efforts and studies.

Book Electromagnetic Modeling by Finite Element Methods

Download or read book Electromagnetic Modeling by Finite Element Methods written by João Pedro A. Bastos and published by CRC Press. This book was released on 2003-04-01 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect

Book Multigrid Finite Element Methods for Electromagnetic Field Modeling

Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-02-03 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Parallel Goal oriented Adaptive Finite Element Modeling for 3D Electromagnetic Exploration

Download or read book Parallel Goal oriented Adaptive Finite Element Modeling for 3D Electromagnetic Exploration written by and published by . This book was released on 2017 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 10 years, both academia and industry collected large amounts of EM data. Compared with the abundance of data, the processing capacity is the bottleneck to have deeper insight into the earth. To increase the 3D processing capacity, this dissertation focuses on developing a 3D EM data processing toolkit, which could connect from data to model, uncovering the conductivity distribution of the seafloor. The first part of the dissertation employs a parallel goal-oriented adaptive finite element method for 3D electromagnetic modeling. To efficiently discretize the model, we use the unstructured tetrahedral mesh to accommodate arbitrarily complex 3D conductivity variations. Accuracy of the finite element solution could be achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by the goal-oriented error estimation approach to generate the optimal mesh, such that accurate EM responses at the locations of the EM receivers could be calculated. To further improve the computational efficiency, our algorithm is parallelized over frequencies, transmitters and receivers. We benchmark the newly developed algorithm by validating the controlled-source EM solutions on a 1D layered model. Furthermore, we employ a 3D model with significant seafloor bathymetry variations and a heterogeneous subsurface to demonstrate the code's ability to model complex features. In the second part, we introduce the framework for 3D inversion of marine controlled-source electromagnetic (CSEM) data. Our code, named Modeling with Adaptively Refined Elements for 3D EM (MARE3DEM), uses a new variant of the regularized Occam method for the inversion. The forward solver introduced previously serves as the backbone to calculate the model response and jacobians. The forward and inverse meshes are decoupled, such that we could accommodate the size of the inverse problem without sacrificing the accuracy of the forward solution. The sensitivity kernels which describe the change of the responses with respect to the variation of model parameters are efficiently calculated using the adjoint method. We show the reliability and the potential of the inversion algorithm by applying it to the inversion of synthetic marine controlled-source EM data.

Book Electromagnetic Modeling of Composite Metallic and Dielectric Structures

Download or read book Electromagnetic Modeling of Composite Metallic and Dielectric Structures written by Branko M. Kolund?zija and published by Artech House. This book was released on 2002 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This practical, new book provides a much wider choice of analytical solutions to problems faced by antenna design engineers and researchers working in electromagnetic modeling. Based on leading-edge method-of-moments procedures, the book presents new theories and techniques that help professionals optimize computer performance in numerical analysis of composite metallic and dielectric structures in the complex frequency domain. For the first time, comparisons and new combinations of techniques bring the elements of flexibility, ease of implementation, accuracy, and efficiency into clear focus for all practitioners.

Book Wavelet Applications in Engineering Electromagnetics

Download or read book Wavelet Applications in Engineering Electromagnetics written by Tapan K. Sarkar and published by Artech House. This book was released on 2002 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from an engineering perspective, this unique resource describes the practical application of wavelets to the solution of electromagnetic field problems and in signal analysis with an even-handed treatment of the pros and cons. A key feature of this book is that the wavelet concepts have been described from the filter theory point of view that is familiar to researchers with an electrical engineering background. The book shows you how to design novel algorithms that enable you to solve electrically, large electromagnetic field problems using modest computational resources. It also provides you with new ideas in the design and development of unique waveforms for reliable target identification and practical radar signal analysis. The book includes more then 500 equations, and covers a wide range of topics, from numerical methods to signal processing aspects.

Book The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication

Download or read book The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication written by Tapan K. Sarkar and published by . This book was released on 2018 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electromagnetics for Engineers Volume 1  Electrostatics and Magnetostatics

Download or read book Electromagnetics for Engineers Volume 1 Electrostatics and Magnetostatics written by Dean James Friesen and published by Artech House. This book was released on 2023-12-31 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetism for Engineers, VOL. I: Electrostatics is a comprehensive introduction to the fundamental principles of electromagnetism, making it an indispensable source for a wide range of readers. This volume covers the essential concepts of electrostatics, including Coulomb's law, electric fields, Gauss's law, and vector mathematics, which forms a foundational tool throughout the book. What sets this book apart are the numerous illustrations and diagrams that visually elucidate complex topics, ensuring a clear and thorough understanding. To reinforce learning, the text includes problem and solution sets, giving readers an opportunity to apply the concepts they have acquired. This book is particularly valuable for college graduates and engineering students who are beginning their journey into the realm of electromagnetism. It is also an excellent reference for practicing engineers seeking to refresh their knowledge of the basic principles of electromagnetism. With a focus on both theory and practical application, this volume provides a strong foundation for readers at various stages of their engineering education and career.

Book Integral Methods in Low Frequency Electromagnetics

Download or read book Integral Methods in Low Frequency Electromagnetics written by Pavel Solin and published by John Wiley & Sons. This book was released on 2009-08-11 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods Indirect solutions of electromagnetic fields by the boundary element method Integral equations in the solution of selected coupled problems Numerical methods for integral equations All computations presented in the book are done by means of the authors' own codes, and a significant amount of their own results is included. At the book's end, they also discuss novel integral techniques of a higher order of accuracy, which are representative of the future of this rapidly advancing field. Integral Methods in Low-Frequency Electromagnetics is of immense interest to members of the electrical engineering and applied mathematics communities, ranging from graduate students and PhD candidates to researchers in academia and practitioners in industry.

Book Computational Electromagnetics

Download or read book Computational Electromagnetics written by Anders Bondeson and published by Springer Science & Business Media. This book was released on 2006-02-07 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Book Analytical Modeling in Applied Electromagnetics

Download or read book Analytical Modeling in Applied Electromagnetics written by Sergei Tretyakov and published by Artech House. This book was released on 2003 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Modeling in Applied Electromagnets encompasses the most complete treatment on the subject published to date, focusing on the nature of models in radio engineering. This leading-edge resource brings you detailed coverage of the latest topics, including metamaterials, photonic bandgaps and artificial impedance surfaces, and applies these concepts to a wide range of applications. The book provides you with working examples that are mainly directed to antenna applications, but the modeling methods and results can be used for other practical devices as well.