EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Thorium Fuel Cycle

Download or read book Thorium Fuel Cycle written by International Atomic Energy Agency and published by . This book was released on 2005 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.

Book Introduction of Thorium in the Nuclear Fuel Cycle

Download or read book Introduction of Thorium in the Nuclear Fuel Cycle written by and published by . This book was released on 2015 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thorium Fuel Cycle

    Book Details:
  • Author : Fouad Sabry
  • Publisher : One Billion Knowledgeable
  • Release : 2022-10-15
  • ISBN :
  • Pages : 530 pages

Download or read book Thorium Fuel Cycle written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2022-10-15 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Thorium Fuel Cycle The fertile material in the thorium fuel cycle is an isotope of thorium called 232Th, and the thorium fuel cycle itself is a kind of nuclear fuel cycle. Within the reactor, 232Th is converted into the fissile artificial uranium isotope 233U, which is then used as the fuel for the nuclear reactor. Natural thorium, in contrast to natural uranium, only contains minute quantities of fissile material, which is insufficient to kick off a nuclear chain reaction. In order to kickstart the fuel cycle, either more fissile material or an other neutron source is required. 233U is created when 232Th, which is powered by thorium, absorbs neutrons in a reactor. This is analogous to the process that occurs in uranium breeder reactors, in which fertile 238U is subjected to neutron absorption in order to produce fissile 239Pu. The produced 233U either fissions in situ or is chemically removed from the old nuclear fuel and converted into new nuclear fuel, depending on the architecture of the reactor and the fuel cycle. Fissioning in situ is the more efficient method. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Thorium fuel cycle Chapter 2: Nuclear reactor Chapter 3: Radioactive waste Chapter 4: Fissile material Chapter 5: Nuclear fuel cycle Chapter 6: MOX fuel Chapter 7: Breeder reactor Chapter 8: Uranium-238 Chapter 9: Energy amplifier Chapter 10: Subcritical reactor Chapter 11: Integral fast reactor Chapter 12: Fertile material Chapter 13: Uranium-233 Chapter 14: Plutonium-239 Chapter 15: Isotopes of uranium Chapter 16: Isotopes of plutonium Chapter 17: Weapons-grade nuclear material Chapter 18: Uranium-236 Chapter 19: Burnup Chapter 20: Liquid fluoride thorium reactor Chapter 21: Nuclear transmutation (II) Answering the public top questions about thorium fuel cycle. (III) Real world examples for the usage of thorium fuel cycle in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of thorium fuel cycle' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of thorium fuel cycle.

Book Thorium Energy for the World

Download or read book Thorium Energy for the World written by Jean-Pierre Revol and published by Springer. This book was released on 2016-04-05 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy technologies, from basic R&D to industrial developments. They also describe how thorium can be used in critical reactors and in subcritical accelerator-driven systems (ADS), answering the important questions: – Why is thorium so attractive and what is the role of innovation, in particular in the nuclear energy domain? – What are the national and international R&D programs on thorium technologies and how are they progressing? ThEC13 was organized jointly by the international Thorium Energy Committee (iThEC), an association based in Geneva, and the International Thorium Energy Organisation (IThEO). It was held in the Globe of Science and Innovation at the European Organization for Nuclear Research (CERN), Geneva, Switzerland, in October 2013.

Book Thorium Fuel Cycle

Download or read book Thorium Fuel Cycle written by Raymond G. Wymer and published by . This book was released on 1968 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thorium and the Third Fuel

Download or read book Thorium and the Third Fuel written by Joseph M. Dukert and published by . This book was released on 1970 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Fuel Cycle Science and Engineering

Download or read book Nuclear Fuel Cycle Science and Engineering written by Ian Crossland and published by Elsevier. This book was released on 2012-09-21 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nuclear fuel cycle is characterised by the wide range of scientific disciplines and technologies it employs. The development of ever more integrated processes across the many stages of the nuclear fuel cycle therefore confronts plant manufacturers and operators with formidable challenges. Nuclear fuel cycle science and engineering describes both the key features of the complete nuclear fuel cycle and the wealth of recent research in this important field. Part one provides an introduction to the nuclear fuel cycle. Radiological protection, security and public acceptance of nuclear technology are considered, along with the economics of nuclear power. Part two goes on to explore materials mining, enrichment, fuel element design and fabrication for the uranium and thorium nuclear fuel cycle. The impact of nuclear reactor design and operation on fuel element irradiation is the focus of part three, including water and gas-cooled reactors, along with CANDU and Generation IV designs. Finally, part four reviews spent nuclear fuel and radioactive waste management. With its distinguished editor and international team of expert contributors, Nuclear fuel cycle science and engineering provides an important review for all those involved in the design, fabrication, use and disposal of nuclear fuels as well as regulatory bodies and researchers in this field. Provides a comprehensive and holistic review of the complete nuclear fuel cycle Reviews the issues presented by the nuclear fuel cycle, including radiological protection and security, public acceptance and economic analysis Discusses issues at the front-end of the fuel cycle, including uranium and thorium mining, enrichment and fuel design and fabrication

Book Proceedings of the Thorium Fuel Cycle Symposium

Download or read book Proceedings of the Thorium Fuel Cycle Symposium written by and published by . This book was released on 1962 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molten Salt Reactors and Thorium Energy

Download or read book Molten Salt Reactors and Thorium Energy written by Thomas James Dolan and published by Elsevier. This book was released on 2024-01-25 with total page 1068 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts Covers MSR applications, technical issues, reactor types and reactor designs Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe

Book Thorium Fuel Cycle

Download or read book Thorium Fuel Cycle written by International Atomic Energy Agency and published by . This book was released on 1970 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Use of Thorium in Nuclear Power Reactors

Download or read book The Use of Thorium in Nuclear Power Reactors written by and published by . This book was released on 1969 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thorium   Energy for the Future

Download or read book Thorium Energy for the Future written by A.K. Nayak and published by Springer. This book was released on 2019-01-30 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises selected proceedings of the ThEC15 conference. The book presents research findings on various facets of thorium energy, including exploration and mining, thermo-physical and chemical properties of fuels, reactor physics, challenges in fuel fabrication, thorium fuel cycles, thermal hydraulics and safety, material challenges, irradiation experiences, and issues and challenges for the design of advanced thorium fueled reactors. Thorium is more abundant than uranium and has the potential to provide energy to the world for centuries if used in a closed fuel cycle. As such, technologies for using thorium for power generation in nuclear reactors are being developed worldwide. Since there is a strong global thrust towards designing nuclear reactors with thorium-based fuel, this book will be of particular interest to nuclear scientists, reactor designers, regulators, academics and policymakers.

Book Perspectives on the Use of Thorium in the Nuclear Fuel Cycle

Download or read book Perspectives on the Use of Thorium in the Nuclear Fuel Cycle written by OECD Nuclear Energy Agency and published by . This book was released on 2015 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non Proliferative  Thorium Based  Core and Fuel Cycle for Pressurized Water Reactors

Download or read book Non Proliferative Thorium Based Core and Fuel Cycle for Pressurized Water Reactors written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the amount of discharged spent fuel, for a given energy production, compared with standard VVER/PWR. The total Pu production rate of RTF cycles is only 30 % of standard reactor. In addition, the isotopic compositions of the RTF's and standard reactor grade Pu are markedly different due to the very high burnup accumulated by the RTF spent fuel.

Book Sustainable Thorium Nuclear Fuel Cycles

Download or read book Sustainable Thorium Nuclear Fuel Cycles written by and published by . This book was released on 2015 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: This article presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. In conclusion, the performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.