EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interfacial Spin Wave Phenomena in Thin Film Oxide Heterostructures

Download or read book Interfacial Spin Wave Phenomena in Thin Film Oxide Heterostructures written by Lauren Jane Riddiford and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spintronics, based on the use of the spin degree of freedom of electrons, has attracted much attention as an avenue for creating energy-efficient memory storage and electronic devices. A pure spin current, where spin angular momentum is transferred without any charge current, is desirable to realize low-loss devices due to the lack of heat dissipation associated with moving charge. Low-damping magnetic insulator thin films that can propagate spin currents with minimal dissipation are essential for this purpose. At the same time, magnetic insulators are also useful to stabilize novel ground states in neighboring materials. We have identified a class of spinel ferrite magnetic insulators which have desirable properties for these applications. I will present results on spin-to-charge and charge-to-spin conversion in low-damping MgAl0.5Fe1.5O4 (MAFO) and Li0.5Al1Fe1.5O4 (LAFO) thin films, which show ideal properties for pure spin current applications. Further, I will discuss MAFO/Bi2Se3 bilayers in the context of inducing a magnetic proximity effect in a topological insulator, and I will show that common techniques currently used to detect magnetic proximity effects are insufficient. Finally, I will characterize LaTiO3 thin films for charge-to-spin conversion in bilayers with CoFeB. These results highlight both the promise and challenges associated with building magnetic heterostructures for novel, energy-efficient devices.

Book Emergent Phenomena at Complex Oxide Interfaces

Download or read book Emergent Phenomena at Complex Oxide Interfaces written by Pu Yu and published by . This book was released on 2011 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel phenomena and functionalities at epitaxial complex oxide heterostructures have been attracting huge scientific attention because of the intriguing fundamental physics as well as potential for technological applications that they embody. Essentially, charge and spin reconstruction at the interface can lead to exotic properties, which are completely different from those inherent to the individual materials, for example, a conductive interface between two insulating materials and interface ferromagnetism in the proximity of an antiferromagnet. The interplay between charge and spin degrees of freedom can be particularly intriguing, leading to a fascinating realm, called multiferroic. In this dissertation, a systematic study is performed on the electronic (charge) and magnetic (spin) interaction/reconstruction across the interface of an all-oxide model heterostructure system consisting of the ferromagnet (FM) La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) and the multiferroic (ferroelectric and antiferromagnetic) BiFeO$_3$ (BFO). The study demonstrates two pathways of using these exotic interfacial properties to control bulk properties, both the ferroelectricity in BFO and ferromagnetism in LSMO. The journey starts with the growth of high-quality BFO/LSMO heterostructures with unit-cell precision control using reflection high-energy electron diffraction combined with pulsed-laser deposition, providing an important platform for the investigation of electronic and magnetic coupling phenomena across the interface. First, we have observed a novel consequence of the interface electronic interaction due to the so-called ``polar discontinuity'', namely, a built-in electrostatic potential accumulates across the heterointerface, and provides deterministic control of ferroelectric polarization states in thin films. This observation suggests a strong, delocalized effect with important implications for future electronics based on such materials. Secondly, we have revealed a strong magnetic coupling at this interface, manifested in the form of an enhanced coercive field as well as a significant exchange-bias coupling. Based on our x-ray magnetic circular dichroism studies, the origin of the exchange-bias coupling is attributed to a novel ferromagnetic state formed in the antiferromagnetic BFO sublattice at the interface with LSMO. Thirdly, using a field effect geometry, we have proposed a pathway to use an electric field to control the magnetism in LSMO in which the ground state of the interfacial ferromagnetic state is strongly correlated with the ferroelectric polarization. Magnetotransport measurements clearly demonstrate a reversible switch/control between two distinct exchange-bias states by isothermally switching the ferroelectric polarization of BFO. This is an important step towards controlling magnetization with the electric field, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents. Finally, combining experimental results with first-principle and phenomenological model calculations, a microscopic model has been proposed to understand the underlying physics of the magnetoelectric coupling, providing further insights on achieving the electric-field control of magnetism. In summary, our studies on the interfacial electronic and magnetic properties at BFO/LSMO heterointerfaces have revealed a strong interplay between the charge, spin, orbital and lattice degrees of freedom at the interface, which will have important implications for a new pathway to use the interface properties to control bulk functionalities (ferroelectric polarization and ferromagnetic magnetization in this study). Such couplings at the interface may be extended to other oxides and will bring into play remarkable physical concepts to this developing field of complex oxide heterointerfaces.

Book Multifunctional Oxide Heterostructures

Download or read book Multifunctional Oxide Heterostructures written by Evgeny Y. Tsymbal and published by Oxford University Press. This book was released on 2012-08-30 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.

Book Thin Films and Heterostructures for Oxide Electronics

Download or read book Thin Films and Heterostructures for Oxide Electronics written by Satishchandra B. Ogale and published by Springer Science & Business Media. This book was released on 2005-07-15 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.

Book Strain induced Phenomenon in Complex Oxide Thin Films

Download or read book Strain induced Phenomenon in Complex Oxide Thin Films written by Ryan Haislmaier and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena.The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titatnium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO3 films, the critical effects of nonstoichiometry on ferroelectric properties are investigated, where enhanced ferroelectric responses are only found for stoichiometric films grown inside of the growth windows, whereas outside of the optimal growth window conditions, ferroelectric properties are greatly deteriorated and eventually disappear for highly nonstoichiometric film compositions. Utilizing these stoichiometric growth windows, high temperature polar phase transitions are discovered for compressively strained CaTiO3 films with transition temperatures in excess of 700 K, rendering this material as a strong candidate for high temperature electronic applications. Beyond the synthesis of single phase materials using hybrid MBE, a methodology is presented for constructing layered (SrTiO3)n/(CaTiO3)n superlattice structures, where precise control over the unit cell layering thickness (n) is demonstrated using in-situ reflection high energy electron diffraction. The effects of interface roughness and layering periodicity (n) on the strain-induced ferroelectric properties for a series of n=1-10 (SrTiO3)n/(CaTiO3)n superlattice films are investigated. It is found that the stabilization of a ferroelectric phase is independent of n, but is however strongly dominated by the degree of interface roughness which is quantified by measuring the highest nth order X-ray diffraction peak splitting of each superlattice film. A counter-intuitive realization is made whereby a critical amount of interface roughness is required in order to enable the formation of the predicted strain-stabilized ferroelectric phase, whereas sharp interfaces actually suppress this ferroelectric phase from manifesting. It is shown how high-quality complex oxide superlattices can be constructed using hybrid MBE technique, allowing the ability to control layered materials at the atomic scale. Furthermore, a detailed growth methodology is provided for constructing a layered n=4 SrO(SrTiO3)n Ruddlesden-Popper (RP) phase by hybrid MBE, where the ability to deposit single monolayers of SrO and TiO2 is utilized to build the RP film structure over a time period of 5 hours. This is the first time that a thin film RP phase has been grown using hybrid MBE, where an a stable control over the fluxes is demonstrated during relatively long time periods of growth, which advantageously facilitates the synthesis of high-quality RP materials with excellent structural and chemical homogeneity.Additionally, this work demonstrates some major advancements in optical second harmonic generation (SHG) characterization techniques of ferroelectric thin film materials. The SHG characterization techniques developed here proved to be the bread-and-butter for most of the work performed in this thesis, providing a powerful tool for identifying the existence of strain-induced ferroelectric phases, including their temperature dependence and polar symmetry. The work presented in this dissertation will hopefully provide a preliminary road map for future hybrid MBE growers, scientists and researchers, to develop and investigate epitaxial strain and heterostructure layering induced phenomena in other complex oxide systems.

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book Ordering Phenomena in Rare Earth Nickelate Heterostructures

Download or read book Ordering Phenomena in Rare Earth Nickelate Heterostructures written by Matthias Hepting and published by Springer. This book was released on 2017-06-28 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by . This book was released on 2017 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Download or read book Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures written by Anjan Barman and published by Springer. This book was released on 2017-12-27 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.

Book Spin Current

    Book Details:
  • Author : Sadamichi Maekawa
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198787073
  • Pages : 541 pages

Download or read book Spin Current written by Sadamichi Maekawa and published by Oxford University Press. This book was released on 2017 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2540 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques

Download or read book Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques written by Fryderyk Lyzwa and published by Springer Nature. This book was released on 2022-10-05 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena. Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.

Book Hard X ray Photoelectron Spectroscopy  HAXPES

Download or read book Hard X ray Photoelectron Spectroscopy HAXPES written by Joseph Woicik and published by Springer. This book was released on 2015-12-26 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Book Quantum Field Theory of Many Body Systems

Download or read book Quantum Field Theory of Many Body Systems written by Xiao-Gang Wen and published by OUP Oxford. This book was released on 2004-06-04 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.

Book Spectroscopy of Complex Oxide Interfaces

Download or read book Spectroscopy of Complex Oxide Interfaces written by Claudia Cancellieri and published by Springer. This book was released on 2018-04-09 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.

Book Introduction to Spintronics

    Book Details:
  • Author : Evelyn Radford
  • Publisher : Larsen and Keller Education
  • Release : 2019-06-10
  • ISBN : 9781641721028
  • Pages : 226 pages

Download or read book Introduction to Spintronics written by Evelyn Radford and published by Larsen and Keller Education. This book was released on 2019-06-10 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spintronics refers to the study of the intrinsic spin of the electron and its associated magnetic moment. It has potential applications in the area of data storage and transfer. Spintronic systems are prominently present in dilute magnetic semiconductors (DMS) and Heusler alloys. Some metal-based spintronic devices are tunnel magnetoresistance, spin-transfer torque and spin-wave logic devices. Non-volatile spin-logic devices that enable scaling are being widely studied. Spin-transfer and torque-based logic devices that use spins and magnets for information processes are also being developed. This book provides comprehensive insights into the field of spintronics. Such selected concepts that redefine this field have been presented herein. Coherent flow of topics, student-friendly language and extensive use of examples make this textbook an invaluable source of knowledge.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: