Download or read book Intelligent Data Processing written by Vadim V. Strijov and published by Springer Nature. This book was released on 2019-11-15 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Data Processing, IDP 2016, held in Barcelona, Spain, in October 2016. The 11 revised full papers were carefully reviewed and selected from 52 submissions. The papers of this volume are organized in topical sections on machine learning theory with applications; intelligent data processing in life and social sciences; morphological and technological approaches to image analysis.
Download or read book Intelligent Data Analysis written by Deepak Gupta and published by John Wiley & Sons. This book was released on 2020-07-13 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Download or read book Intelligent Data Analysis written by Michael R. Berthold and published by Springer. This book was released on 2007-06-07 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
Download or read book Intelligent Data Sensing and Processing for Health and Well being Applications written by Miguel Antonio Wister Ovando and published by Academic Press. This book was released on 2018-07-26 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Sensing and Processing for Health and Well-being Applications uniquely combines full exploration of the latest technologies for sensor-collected intelligence with detailed coverage of real-case applications for healthcare and well-being at home and in the workplace. Forward-thinking in its approach, the book presents concepts and technologies needed for the implementation of today's mobile, pervasive and ubiquitous systems, and for tomorrow's IoT and cyber-physical systems. Users will find a detailed overview of the fundamental concepts of gathering, processing and analyzing data from devices disseminated in the environment, as well as the latest proposals for collecting, processing and abstraction of data-sets. In addition, the book addresses algorithms, methods and technologies for diagnosis and informed decision-making for healthcare and well-being. Topics include emotional interface with ambient intelligence and emerging applications in detection and diagnosis of neurological diseases. Finally, the book explores the trends and challenges in an array of areas, such as applications for intelligent monitoring in the workplace for well-being, acquiring data traffic in cities to improve the assistance of first aiders, and applications for supporting the elderly at home. - Examines the latest applications and future directions for mobile data sensing in an array of health and well-being scenarios - Combines leading computing paradigms and technologies, development applications, empirical studies, and future trends in the multidisciplinary field of smart sensors, smart sensor networks, data analysis and machine intelligence methods - Features an analysis of security, privacy and ethical issues in smart sensor health and well-being applications - Equips readers interested in interdisciplinary projects in ubiquitous computing or pervasive computing and ambient intelligence with the latest trends and developments
Download or read book Handbook of Research on Intelligent Data Processing and Information Security Systems written by Bilan, Stepan Mykolayovych and published by IGI Global. This book was released on 2019-11-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent technologies have emerged as imperative tools in computer science and information security. However, advanced computing practices have preceded new methods of attacks on the storage and transmission of data. Developing approaches such as image processing and pattern recognition are susceptible to breaches in security. Modern protection methods for these innovative techniques require additional research. The Handbook of Research on Intelligent Data Processing and Information Security Systems provides emerging research exploring the theoretical and practical aspects of cyber protection and applications within computer science and telecommunications. Special attention is paid to data encryption, steganography, image processing, and recognition, and it targets professionals who want to improve their knowledge in order to increase strategic capabilities and organizational effectiveness. As such, this book is ideal for analysts, programmers, computer engineers, software engineers, mathematicians, data scientists, developers, IT specialists, academicians, researchers, and students within fields of information technology, information security, robotics, artificial intelligence, image processing, computer science, and telecommunications.
Download or read book Advanced Data Acquisition and Intelligent Data Processing written by Vladimir Haasz and published by CRC Press. This book was released on 2022-09-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: DAQ and data processing is a basic part of all automated production systems, diagnostic systems, watching over quality of production, energy distribution, transport control or in various other areas. Demands on the speed, accuracy and reliability increase in general. It is possible to achieve not only using superior (but also more expensive) hardware, but also applying advanced data acquisition and intelligent data processing. It deals e.g. optimal data fusion of a number of sensors, new stochastic methods for accuracy increasing, new algorithms for acceleration of data processing, etc. These are the grounds for publishing this book. Advanced Data Acquisition and Intelligent Data Processing offers 10 up-to-date examples of different applications of advanced data acquisition and intelligent data processing used in monitoring, measuring and diagnostics systems. The book arose based on the most interesting papers from this area published at IDAACS?2013 conference. However, the indivudual chapters include not only designed solution in wider context but also relevant theoretical parts, achieved results and possible future ways.Technical topics discussed in this book include: • advanced methods of data acquisition in application that are not routine;• measured data fusion using up-to-date advanced data processing;• nonlinear dynamical systems identification;• multidimensional image processing.Advanced Data Acquisition and Intelligent Data Processing is ideal for personnel of firms deals with advanced instrumentation, energy consumption monitoring, environment monitoring, non-descructive diagnostics robotics, etc., as well as academic staff and postgraduate students in electrical, control and computer engineering.Content: 1. Introduction; 2. Waveform acquisition with resolutions exceeding those of the ADC employed; 3. Different Disaggregation Algorithms in Non-Intrusive Home Energy Monitoring Systems; 4. Design and testing of an electronic nose system sensitive to the aroma of truffles; 5. DAQ System for Ultrasonic Transducer Evaluation under Spread Spectrum Excitation; 6. Optimal Data Fusion in Decentralized Stochastic Unknown Input Observers; 7. Odor Classification by Neural Networks; 8. ANFIS Based Approach for Improved Multisensors Signal Processing; 9. Neuro-Fuzzy Sensor's Linearization Based FPGA; 10. Interpolation Method of Nonlinear Dynamical Systems Identification Based on Volterra Model in Frequency Domain ; 11. Training Cellular Automata for Hyperspectral Image Segmentation
Download or read book Guide to Intelligent Data Analysis written by Michael R. Berthold and published by Springer Science & Business Media. This book was released on 2010-06-23 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Download or read book Computational Intelligent Data Analysis for Sustainable Development written by Ting Yu and published by CRC Press. This book was released on 2016-04-19 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present
Download or read book Intelligent Multi Modal Data Processing written by Soham Sarkar and published by John Wiley & Sons. This book was released on 2021-04-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the most recent applications of intelligent multi-modal data processing Intelligent Multi-Modal Data Processing contains a review of the most recent applications of data processing. The Editors and contributors – noted experts on the topic – offer a review of the new and challenging areas of multimedia data processing as well as state-of-the-art algorithms to solve the problems in an intelligent manner. The text provides a clear understanding of the real-life implementation of different statistical theories and explains how to implement various statistical theories. Intelligent Multi-Modal Data Processing is an authoritative guide for developing innovative research ideas for interdisciplinary research practices. Designed as a practical resource, the book contains tables to compare statistical analysis results of a novel technique to that of the state-of-the-art techniques and illustrations in the form of algorithms to establish a pre-processing and/or post-processing technique for model building. The book also contains images that show the efficiency of the algorithm on standard data set. This important book: Includes an in-depth analysis of the state-of-the-art applications of signal and data processing Contains contributions from noted experts in the field Offers information on hybrid differential evolution for optimal multilevel image thresholding Presents a fuzzy decision based multi-objective evolutionary method for video summarisation Written for students of technology and management, computer scientists and professionals in information technology, Intelligent Multi-Modal Data Processing brings together in one volume the range of multi-modal data processing.
Download or read book Intelligent Data Analysis for Biomedical Applications written by D. Jude Hemanth and published by Academic Press. This book was released on 2019-03-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems
Download or read book Intelligent Data Mining and Fusion Systems in Agriculture written by Xanthoula-Eirini Pantazi and published by Academic Press. This book was released on 2019-10-08 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. - Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture - Addresses AI use in weed management, disease detection, yield prediction and crop production - Utilizes case studies to provide real-world insights and direction
Download or read book Guide to Intelligent Data Science written by Michael R. Berthold and published by Springer Nature. This book was released on 2020-08-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Download or read book Big Data Analytics for Intelligent Healthcare Management written by Nilanjan Dey and published by Academic Press. This book was released on 2019-04-15 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more
Download or read book Intelligent Data Engineering and Automated Learning IDEAL 2020 written by Cesar Analide and published by Springer Nature. This book was released on 2020-10-29 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.
Download or read book Data Analytics for Intelligent Transportation Systems written by Mashrur Chowdhury and published by Elsevier. This book was released on 2024-11-02 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
Download or read book Managerial Perspectives on Intelligent Big Data Analytics written by Sun, Zhaohao and published by IGI Global. This book was released on 2019-02-22 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
Download or read book Big Data Analytics for Sensor Network Collected Intelligence written by Hui-Huang Hsu and published by Morgan Kaufmann. This book was released on 2017-02-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics