EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Information Theory  Inference and Learning Algorithms

Download or read book Information Theory Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Book Foundations of Info metrics

Download or read book Foundations of Info metrics written by Amos Golan and published by Oxford University Press. This book was released on 2018 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Info-metrics is the science of modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information. It is at the intersection of information theory, statistical inference, and decision-making under uncertainty. It plays an important role in helping make informed decisions even when there is inadequate or incomplete information because it provides a framework to process available information with minimal reliance on assumptions that cannot be validated. In this pioneering book, Amos Golan, a leader in info-metrics, focuses on unifying information processing, modeling and inference within a single constrained optimization framework. Foundations of Info-Metrics provides an overview of modeling and inference, rather than a problem specific model, and progresses from the simple premise that information is often insufficient to provide a unique answer for decisions we wish to make. Each decision, or solution, is derived from the available input information along with a choice of inferential procedure. The book contains numerous multidisciplinary applications and case studies, which demonstrate the simplicity and generality of the framework in real world settings. Examples include initial diagnosis at an emergency room, optimal dose decisions, election forecasting, network and information aggregation, weather pattern analyses, portfolio allocation, strategy inference for interacting entities, incorporation of prior information, option pricing, and modeling an interacting social system. Graphical representations illustrate how results can be visualized while exercises and problem sets facilitate extensions. This book is this designed to be accessible for researchers, graduate students, and practitioners across the disciplines.

Book Model Selection and Multimodel Inference

Download or read book Model Selection and Multimodel Inference written by Kenneth P. Burnham and published by Springer Science & Business Media. This book was released on 2007-05-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.

Book Information  Physics  and Computation

Download or read book Information Physics and Computation written by Marc Mézard and published by Oxford University Press. This book was released on 2009-01-22 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.

Book Statistical and Inductive Inference by Minimum Message Length

Download or read book Statistical and Inductive Inference by Minimum Message Length written by C.S. Wallace and published by Springer Science & Business Media. This book was released on 2005-05-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.

Book Model Based Inference in the Life Sciences

Download or read book Model Based Inference in the Life Sciences written by David R. Anderson and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.

Book Information theoretic causal inference of lexical flow

Download or read book Information theoretic causal inference of lexical flow written by Johannes Dellert and published by Language Science Press. This book was released on 2019 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume seeks to infer large phylogenetic networks from phonetically encoded lexical data and contribute in this way to the historical study of language varieties. The technical step that enables progress in this case is the use of causal inference algorithms. Sample sets of words from language varieties are preprocessed into automatically inferred cognate sets, and then modeled as information-theoretic variables based on an intuitive measure of cognate overlap. Causal inference is then applied to these variables in order to determine the existence and direction of influence among the varieties. The directed arcs in the resulting graph structures can be interpreted as reflecting the existence and directionality of lexical flow, a unified model which subsumes inheritance and borrowing as the two main ways of transmission that shape the basic lexicon of languages. A flow-based separation criterion and domain-specific directionality detection criteria are developed to make existing causal inference algorithms more robust against imperfect cognacy data, giving rise to two new algorithms. The Phylogenetic Lexical Flow Inference (PLFI) algorithm requires lexical features of proto-languages to be reconstructed in advance, but yields fully general phylogenetic networks, whereas the more complex Contact Lexical Flow Inference (CLFI) algorithm treats proto-languages as hidden common causes, and only returns hypotheses of historical contact situations between attested languages. The algorithms are evaluated both against a large lexical database of Northern Eurasia spanning many language families, and against simulated data generated by a new model of language contact that builds on the opening and closing of directional contact channels as primary evolutionary events. The algorithms are found to infer the existence of contacts very reliably, whereas the inference of directionality remains difficult. This currently limits the new algorithms to a role as exploratory tools for quickly detecting salient patterns in large lexical datasets, but it should soon be possible for the framework to be enhanced e.g. by confidence values for each directionality decision.

Book On Science  Inference  Information and Decision Making

Download or read book On Science Inference Information and Decision Making written by A. Szaniawski and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two competing pictures of science. One considers science as a system of inferences, whereas another looks at science as a system of actions. The essays included in this collection offer a view which intends to combine both pictures. This compromise is well illustrated by Szaniawski's analysis of statistical inferences. It is shown that traditional approaches to the foundations of statistics do not need to be regarded as conflicting with each other. Thus, statistical rules can be treated as rules of behaviour as well as rules of inference. Szaniawski's uniform approach relies on the concept of rationality, analyzed from the point of view of decision theory. Applications of formal tools to the problem of justice and division of goods shows that the concept of rationality has a wider significance. Audience: The book will be of interest to philosophers of science, logicians, ethicists and mathematicians.

Book Theory of Statistical Inference and Information

Download or read book Theory of Statistical Inference and Information written by Igor Vajda and published by Springer. This book was released on 1989-02-28 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Information Algebras

    Book Details:
  • Author : Juerg Kohlas
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1447100093
  • Pages : 274 pages

Download or read book Information Algebras written by Juerg Kohlas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence.

Book Active Inference

    Book Details:
  • Author : Thomas Parr
  • Publisher : MIT Press
  • Release : 2022-03-29
  • ISBN : 0262362287
  • Pages : 313 pages

Download or read book Active Inference written by Thomas Parr and published by MIT Press. This book was released on 2022-03-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.

Book Statistical Inference for Engineers and Data Scientists

Download or read book Statistical Inference for Engineers and Data Scientists written by Pierre Moulin and published by Cambridge University Press. This book was released on 2019 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.

Book Inference from Signs

Download or read book Inference from Signs written by James Allen and published by OUP Oxford. This book was released on 2001 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Original and penetrating, this book investigates of the notion of inference from signs, which played a central role in ancient philosophical and scientific method. It examines an important chapter in ancient epistemology: the debates about the nature of evidence and of the inferences based on it--or signs and sign-inferences as they were called in antiquity. As the first comprehensive treatment of this topic, it fills an important gap in the histories of science and philosophy.

Book Applying Mathematics

    Book Details:
  • Author : Otávio Bueno
  • Publisher : Oxford University Press
  • Release : 2018
  • ISBN : 0198815042
  • Pages : 276 pages

Download or read book Applying Mathematics written by Otávio Bueno and published by Oxford University Press. This book was released on 2018 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: How is that when scientists need some piece of mathematics through which to frame their theory, it is there to hand? Bueno and French offer a new approach to the puzzle of the applicability of mathematics, through a detailed examination of a series of case studies from the history of twentieth-century physics.

Book Knowing and Guessing

Download or read book Knowing and Guessing written by Satoshi Watanabe and published by John Wiley & Sons. This book was released on 1969 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: "An attempt at a quantitative study of the formal aspects of the process of knowing, inferring, information, and learning" -- Preface

Book Statistical Inference in Science

Download or read book Statistical Inference in Science written by D.A. Sprott and published by Springer Science & Business Media. This book was released on 2000-06-22 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.

Book Geometric and Topological Inference

Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.