EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Cauchy Problems in Infinite Dimensions

Download or read book Stochastic Cauchy Problems in Infinite Dimensions written by Irina V. Melnikova and published by CRC Press. This book was released on 2016-04-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.

Book Diffusion Processes and Stochastic Calculus

Download or read book Diffusion Processes and Stochastic Calculus written by Fabrice Baudoin and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2014 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to present, at a graduate level and in a self-contained way, the most important aspects of the theory of continuous stochastic processes in continuous time and to introduce some of its ramifications such as the theory of semigroups, the Malliavin calculus, and the Lyons' rough paths. This book is intended for students, or even researchers, who wish to learn the basics in a concise but complete and rigorous manner. Several exercises are distributed throughout the text to test the understanding of the reader and each chapter ends with bibliographic comments aimed at those interested in exploring the materials further. Stochastic calculus was developed in the 1950s and the range of its applications is huge and still growing today. Besides being a fundamental component of modern probability theory, domains of applications include but are not limited to: mathematical finance, biology, physics, and engineering sciences. The first part of the text is devoted to the general theory of stochastic processes. The author focuses on the existence and regularity results for processes and on the theory of martingales. This allows him to introduce the Brownian motion quickly and study its most fundamental properties. The second part deals with the study of Markov processes, in particular, diffusions. The author's goal is to stress the connections between these processes and the theory of evolution semigroups. The third part deals with stochastic integrals, stochastic differential equations and Malliavin calculus. In the fourth and final part, the author presents an introduction to the very new theory of rough paths by Terry Lyons.

Book A Minicourse on Stochastic Partial Differential Equations

Download or read book A Minicourse on Stochastic Partial Differential Equations written by Robert C. Dalang and published by Springer Science & Business Media. This book was released on 2009 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

Book Financial Modelling with Jump Processes

Download or read book Financial Modelling with Jump Processes written by Peter Tankov and published by CRC Press. This book was released on 2003-12-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic

Book Interest Rate Models  an Infinite Dimensional Stochastic Analysis Perspective

Download or read book Interest Rate Models an Infinite Dimensional Stochastic Analysis Perspective written by René Carmona and published by Springer Science & Business Media. This book was released on 2007-05-22 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM

Book Cambridge Tracts in Mathematics

Download or read book Cambridge Tracts in Mathematics written by Jean Bertoin and published by Cambridge University Press. This book was released on 1996 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book is a comprehensive account of the theory of Lévy processes; aimed at probability theorists.

Book Computational Methods for Inverse Problems

Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Book Introduction to Malliavin Calculus

Download or read book Introduction to Malliavin Calculus written by David Nualart and published by Cambridge University Press. This book was released on 2018-09-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact introduction to this active and powerful area of research, combining basic theory, core techniques, and recent applications.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Bayesian Approach to Inverse Problems

Download or read book Bayesian Approach to Inverse Problems written by Jérôme Idier and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Book Stochastics in Finite and Infinite Dimensions

Download or read book Stochastics in Finite and Infinite Dimensions written by Takeyuki Hida and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last fifty years, Gopinath Kallianpur has made extensive and significant contributions to diverse areas of probability and statistics, including stochastic finance, Fisher consistent estimation, non-linear prediction and filtering problems, zero-one laws for Gaussian processes and reproducing kernel Hilbert space theory, and stochastic differential equations in infinite dimensions. To honor Kallianpur's pioneering work and scholarly achievements, a number of leading experts have written research articles highlighting progress and new directions of research in these and related areas. This commemorative volume, dedicated to Kallianpur on the occasion of his seventy-fifth birthday, will pay tribute to his multi-faceted achievements and to the deep insight and inspiration he has so graciously offered his students and colleagues throughout his career. Contributors to the volume: S. Aida, N. Asai, K. B. Athreya, R. N. Bhattacharya, A. Budhiraja, P. S. Chakraborty, P. Del Moral, R. Elliott, L. Gawarecki, D. Goswami, Y. Hu, J. Jacod, G. W. Johnson, L. Johnson, T. Koski, N. V. Krylov, I. Kubo, H.-H. Kuo, T. G. Kurtz, H. J. Kushner, V. Mandrekar, B. Margolius, R. Mikulevicius, I. Mitoma, H. Nagai, Y. Ogura, K. R. Parthasarathy, V. Perez-Abreu, E. Platen, B. V. Rao, B. Rozovskii, I. Shigekawa, K. B. Sinha, P. Sundar, M. Tomisaki, M. Tsuchiya, C. Tudor, W. A. Woycynski, J. Xiong.

Book Financial Signal Processing and Machine Learning

Download or read book Financial Signal Processing and Machine Learning written by Ali N. Akansu and published by John Wiley & Sons. This book was released on 2016-04-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Book An Introduction to Sparse Stochastic Processes

Download or read book An Introduction to Sparse Stochastic Processes written by Michael Unser and published by Cambridge University Press. This book was released on 2014-08-21 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed guide to sparsity, providing a description of their transform-domain statistics and applying the models to practical algorithms.

Book Machine Learning Refined

    Book Details:
  • Author : Jeremy Watt
  • Publisher : Cambridge University Press
  • Release : 2020-01-09
  • ISBN : 1108480721
  • Pages : 597 pages

Download or read book Machine Learning Refined written by Jeremy Watt and published by Cambridge University Press. This book was released on 2020-01-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Book Malliavin Calculus and Its Applications

Download or read book Malliavin Calculus and Its Applications written by David Nualart and published by American Mathematical Soc.. This book was released on 2009 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Malliavin calculus was developed to provide a probabilistic proof of Hormander's hypoellipticity theorem. The theory has expanded to encompass other significant applications. The main application of the Malliavin calculus is to establish the regularity of the probability distribution of functionals of an underlying Gaussian process. In this way, one can prove the existence and smoothness of the density for solutions of various stochastic differential equations. More recently, applications of the Malliavin calculus in areas such as stochastic calculus for fractional Brownian motion, central limit theorems for multiple stochastic integrals, and mathematical finance have emerged. The first part of the book covers the basic results of the Malliavin calculus. The middle part establishes the existence and smoothness results that then lead to the proof of Hormander's hypoellipticity theorem. The last part discusses the recent developments for Brownian motion, central limit theorems, and mathematical finance.

Book Limit Order Books

    Book Details:
  • Author : Frédéric Abergel
  • Publisher : Cambridge University Press
  • Release : 2016-05-09
  • ISBN : 1316870480
  • Pages : 242 pages

Download or read book Limit Order Books written by Frédéric Abergel and published by Cambridge University Press. This book was released on 2016-05-09 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: A limit order book is essentially a file on a computer that contains all orders sent to the market, along with their characteristics such as the sign of the order, price, quantity and a timestamp. The majority of organized electronic markets rely on limit order books to store the list of interests of market participants on their central computer. A limit order book contains all the information available on a specific market and it reflects the way the market moves under the influence of its participants. This book discusses several models of limit order books. It begins by discussing the data to assess their empirical properties, and then moves on to mathematical models in order to reproduce the observed properties. Finally, the book presents a framework for numerical simulations. It also covers important modelling techniques including agent-based modelling, and advanced modelling of limit order books based on Hawkes processes. The book also provides in-depth coverage of simulation techniques and introduces general, flexible, open source library concepts useful to readers studying trading strategies in order-driven markets.