EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Inductive Biases in Machine Learning for Robotics and Control

Download or read book Inductive Biases in Machine Learning for Robotics and Control written by Michael Lutter and published by Springer Nature. This book was released on 2023-07-31 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: One important robotics problem is “How can one program a robot to perform a task”? Classical robotics solves this problem by manually engineering modules for state estimation, planning, and control. In contrast, robot learning solely relies on black-box models and data. This book shows that these two approaches of classical engineering and black-box machine learning are not mutually exclusive. To solve tasks with robots, one can transfer insights from classical robotics to deep networks and obtain better learning algorithms for robotics and control. To highlight that incorporating existing knowledge as inductive biases in machine learning algorithms improves performance, this book covers different approaches for learning dynamics models and learning robust control policies. The presented algorithms leverage the knowledge of Newtonian Mechanics, Lagrangian Mechanics as well as the Hamilton-Jacobi-Isaacs differential equation as inductive bias and are evaluated on physical robots.

Book Machine Learning for Networking

Download or read book Machine Learning for Networking written by Éric Renault and published by Springer. This book was released on 2019-05-10 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the First International Conference on Machine Learning for Networking, MLN 2018, held in Paris, France, in November 2018. The 22 revised full papers included in the volume were carefully reviewed and selected from 48 submissions. They present new trends in the following topics: Deep and reinforcement learning; Pattern recognition and classification for networks; Machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection; Optimization and new innovative machine learning methods; Performance analysis of machine learning algorithms; Experimental evaluations of machine learning; Data mining in heterogeneous networks; Distributed and decentralized machine learning algorithms; Intelligent cloud-support communications, resource allocation, energy-aware/green communications, software defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.

Book Recent Advances in Robot Learning

Download or read book Recent Advances in Robot Learning written by Judy A. Franklin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).

Book Machine Learning Proceedings 1992

Download or read book Machine Learning Proceedings 1992 written by Peter Edwards and published by Morgan Kaufmann. This book was released on 2014-06-28 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Proceedings 1992

Book Knowledge Guided Machine Learning

Download or read book Knowledge Guided Machine Learning written by Anuj Karpatne and published by CRC Press. This book was released on 2022-08-15 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML

Book A Concise Introduction to Models and Methods for Automated Planning

Download or read book A Concise Introduction to Models and Methods for Automated Planning written by Hector Radanovic and published by Springer Nature. This book was released on 2022-05-31 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography

Book Metaheuristics Algorithm and Optimization of Engineering and Complex Systems

Download or read book Metaheuristics Algorithm and Optimization of Engineering and Complex Systems written by R., Thanigaivelan and published by IGI Global. This book was released on 2024-07-23 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of engineering, optimization and decision-making have become pivotal concerns. The ever-increasing demand for data processing has given rise to issues such as extended processing times and escalated memory utilization, posing formidable obstacles across various engineering domains. Problems persist, requiring not only solutions but advancements beyond existing best practices. Creating and implementing novel heuristic algorithms is a time-intensive process, yet the imperative to do so remains strong, driven by the potential to significantly lower computational costs even with marginal improvements. This book, titled Metaheuristics Algorithm and Optimization of Engineering and Complex Systems, is a beacon of innovation in this context. It examines the critical need for inventive algorithmic solutions, exploring hyperheuristic approaches that offer solutions such as automating search spaces through integrated heuristics. Designed to cater to a broad audience, this book is a valuable resource for both novice and experienced dynamic optimization practitioners. By addressing the spectrum of theory and practice, as well as discrete versus continuous dynamic optimization, it becomes an indispensable reference in a captivating and emerging field. With a deliberate focus on inclusivity, the book is poised to benefit anyone with an interest in staying abreast of the latest developments in dynamic optimization.

Book Lifelong Machine Learning  Second Edition

Download or read book Lifelong Machine Learning Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

Book Cognitive Systems   Information Processing Meets Brain Science

Download or read book Cognitive Systems Information Processing Meets Brain Science written by Richard G.M. Morris and published by Elsevier. This book was released on 2005-08-16 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cognitive Systems - Information Processing Meets Brain Science presents an overview of the exciting, truly multidisciplinary research by neuroscientists and systems engineers in the emerging field of cognitive systems, providing a cross-disciplinary examination of this cutting-edge area of scientific research. This is a great example of where research in very different disciplines touches to create a new emerging area of research. The book illustrates some of the technical developments that could arise from our growing understanding of how living cognitive systems behave, and the ability to use that knowledge in the design of artificial systems. This unique book is of considerable interest to researchers and students in information science, neuroscience, psychology, engineering and adjacent fields. - Represents a remarkable collection of relevant experts from both the life sciences and computer science - Includes state-of-the-art reviews of topics in cognitive systems from both a life sciences and a computer science perspective - Discusses the impact of this research on our lives in the near future

Book Learning to Learn

    Book Details:
  • Author : Sebastian Thrun
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461555299
  • Pages : 346 pages

Download or read book Learning to Learn written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Book Springer Handbook of Computational Intelligence

Download or read book Springer Handbook of Computational Intelligence written by Janusz Kacprzyk and published by Springer. This book was released on 2015-05-28 with total page 1637 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.

Book Fourth European Conference on Artificial Life

Download or read book Fourth European Conference on Artificial Life written by Phil Husbands and published by MIT Press. This book was released on 1997 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics include self-organization, the origins of life, natural selection, evolutionary computation, neural networks, communication, artificial worlds, software agents, philosophical issues in artificial life, ethical problems, and learning and development. Researchers in artificial life attempt to use the physical representation of lifelike phenomena to understand the organizational principles underlying the dynamics of living systems. The goal of the 1997 European Conference on Artificial Life is to provoke new understandings of the relationships between the natural and the artificial. Topics include self-organization, the origins of life, natural selection, evolutionary computation, neural networks, communication, artificial worlds, software agents, philosophical issues in artificial life, ethical problems, and learning and development.

Book Introduction to Machine Learning

Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Book Planning Algorithms

    Book Details:
  • Author : Steven M. LaValle
  • Publisher : Cambridge University Press
  • Release : 2006-05-29
  • ISBN : 9780521862059
  • Pages : 844 pages

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Book Reinforcement Learning and Dynamic Programming Using Function Approximators

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Book Introduction to Autonomous Mobile Robots  second edition

Download or read book Introduction to Autonomous Mobile Robots second edition written by Roland Siegwart and published by MIT Press. This book was released on 2011-02-18 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.

Book The Algebraic Mind

    Book Details:
  • Author : Gary F. Marcus
  • Publisher : MIT Press
  • Release : 2019-01-01
  • ISBN : 0262354403
  • Pages : 241 pages

Download or read book The Algebraic Mind written by Gary F. Marcus and published by MIT Press. This book was released on 2019-01-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.