EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book In plane Carbon Nanotube Field Emitters for High Temperature Integrated Electronics

Download or read book In plane Carbon Nanotube Field Emitters for High Temperature Integrated Electronics written by Andrew Hayes Monica and published by ProQuest. This book was released on 2008 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field emitter structures consist of carbon nanotubes that are created using one of two distinct techniques: dielectrophoretic assembly or thermal chemical vapor deposition synthesis. I will discuss how such techniques can be used to create lateral CNT structures suitable for planar field emission while also enabling complete compatibility with modern semiconductor processing techniques. The electrical and thermal performance results of planar CNT field emitters operating in diode and triode configurations are also reported.

Book Carbon Nanotube and Related Field Emitters

Download or read book Carbon Nanotube and Related Field Emitters written by Yahachi Saito and published by John Wiley & Sons. This book was released on 2010-10-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations. This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.

Book Carbon Nanotube Electronics

Download or read book Carbon Nanotube Electronics written by Ali Javey and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.

Book Carbon Based Electronics

Download or read book Carbon Based Electronics written by Ashok Srivastava and published by CRC Press. This book was released on 2015-03-19 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovery of one-dimensional material carbon nanotubes in 1991 by the Japanese physicist Dr. Sumio Iijima has resulted in voluminous research in the field of carbon nanotubes for numerous applications, including possible replacement of silicon used in the fabrication of CMOS chips. One interesting feature of carbon nanotubes is that these can be me

Book Nanostructured Carbon Electron Emitters and Their Applications

Download or read book Nanostructured Carbon Electron Emitters and Their Applications written by Yahachi Saito and published by CRC Press. This book was released on 2022-01-27 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes—fullerene, nanotubes, graphene, and carbyne—is called “nanostructured carbon” or “nanocarbon.” These isotopes exhibit extreme properties such as ultrahigh mechanical strength, ultrahigh charge–carrier mobility, and high thermal conductivity, attracting considerable attention for their electronic and mechanical applications as well as for exploring new physics and chemistry in the field of basic materials science. Electron sources are important in a wide range of areas, from basic physics and scientific instruments to medical and industrial applications. Carbon nanotubes (CNTs) and graphene behave as excellent electron-field emitters owing to their exceptional properties and offer several benefits compared to traditional cathodes. Field emission (FE) produces very intense electron currents from a small surface area with a narrow energy spread, providing a highly coherent electron beam—a combination that not only provides us with the brightest electron sources but also explores a new field of electron beam–related research. This book presents the enthusiastic research and development of CNT-based FE devices and focuses on the fundamental aspects of FE from nanocarbon materials, including CNTs and graphene, and the latest research findings related to it. It discusses applications of FE to X-ray and UV generation and reviews electron sources in vacuum electronic devices and space thrusters. Finally, it reports on the new forms of carbon produced via FE from CNT.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2009 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication  Field Emission Properties and Theoretical Simulation of Triode type Carbon Nanotube Emitter Arrays

Download or read book Fabrication Field Emission Properties and Theoretical Simulation of Triode type Carbon Nanotube Emitter Arrays written by Jianfeng Wu and published by . This book was released on 2010 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes exhibit excellent field emission properties and will likely be prime candidates as electron sources in future vacuum electronic applications. Recent research has focused on enhancing field emission from traditional diode-type emitters by adding a gate electrode between the anode and the cathode. Since the gate to cathode (emitter) distance in this triode-type structure is small relative to the anode to cathode distance, this structure allows relatively small gate voltages to significantly enhance or dampen field emission. The key challenge for this research is: synthesizing vertically aligned carbon nanotube field emitters inside arrays of triode-type devices. The most common "top-down", etch-deposit-synthesis method of synthesizing carbon nanotubes inside gated cavities is discussed here, and a novel "bottom-up" method is presented. This new approach bypasses the lithography and wet chemistry essential to the etch-deposit-synthesis method, instead using a dual-beam focused ion beam (FIB) system to mill cavities into a multi-layered substrate. Here the substrate is designed such that the act of milling a hole simultaneously creates the gate structure and exposes the catalyst from which carbon nanotubes can then be grown. Carbon nanotubes are synthesized using plasma enhanced chemical vapor deposition (PECVD) rather than thermal chemical vapor deposition, due to the superior alignment of the PECVD growth. As dual-beam FIB and PECVD can both be largely computerized, this synthesis method is highly reproducible. The dual-beam FIB also permits a high degree of controllability in gate radius, cavity depth and emitter spacing. The effects of a host of PECVD growth parameters (initial catalyst thickness, gas concentration, growth temperature, temperature ramping rate, chamber pressure, and plasma voltage) were characterized so that the morphology of the carbon nanotube emitters could be controlled as well. This "bottom-up" method is employed to construct functional, large area carbon nanotube field emitter arrays (CNT FEAs). The role of the gate layer in field emission is examined experimentally as well as through theoretical models. Field emission testing revealed that increasing gate voltage by as little as 0.3 V had significant impact on the local electric fields, lowering the turn-on and threshold fields by 3.6 and 3.0 V/um, respectively, and increasing the field enhancement factor from 149 to 222. A quantum mechanical model of such triode-type field emission indicates that the local electric field generated by a negatively or positively biased gate directly impacts the tunneling barrier thickness and thus the achievable emission current. However, the geometry of triode-type devices (gate height, gate radius, emitter density) can influence the degree to which the gate voltage influences field emission. I demonstrate here an effective method of analytically calculating the effect of various such geometric parameters on the field emission. Results show that gate type (the height of the gate relative the emitter tip) can significantly impact the local electric field and hence the type of applications a device is suitable for. Side gates (gate height emitter height) induced the highest local electric field, while top gates (gate height emitter height) provided the greatest controllability. For all gate types, increasing the size of the gate opening increased the local electric field by diminishing the gate-emitter screening effect. However, gate voltages were able to enhance or inhibit the local electric field much more readily with smaller gate radii. Due to the strength of gate-emitter field screening in the triode-type structure, the spacing between emitters had virtually no impact on the local electric field, allowing relatively high emitter densities. These theoretical results, combined with a highly controllable synthesis method, provide valuable information and methodology for those designing and optimizing triode-type devices targeted at specific applications.

Book Nanofabrication Using Focused Ion and Electron Beams

Download or read book Nanofabrication Using Focused Ion and Electron Beams written by Ivo Utke and published by OUP USA. This book was released on 2012-05 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively reviews the achievements and potentials of a minimally invasive, three-dimensional, and maskless surface structuring technique operating at nanometer scale by using the interaction of focused ion and electron beams (FIB/FEB) with surfaces and injected molecules.

Book Integrally Gated Carbon Nanotube on Post Field Emitter Arrays

Download or read book Integrally Gated Carbon Nanotube on Post Field Emitter Arrays written by and published by . This book was released on 2001 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes (cNT) are excellent field emitters on account of their chemical, structural, and electronic properties, which afford important aspects of robustness that have been lacking in the conventional metal and silicon field emitter arrays (FEA). They possess high current-carrying capacity and mechanical strength. Their small diameters (2-50 nm) and high aspect ratios produce high geometric field enhancement, which remains nearly constant even when material is removed from the end of the tubes such as by back ion bombardment. A key contributing factor to their stability as field emitters is the lack of surface oxide formation. Surface oxide formation on metal or silicon emitters impedes electron transport to the surface and causes changes in the emission characteristics during operation. Furthermore, the oxides could be the main cause for FEA catastrophic destruction by trapping charge which could lead to arcing. 1 It has also been suggested that carbon nanotubes do not form nanoprotrusions as metal and silicon cathodes do, thus making current runaway and arcing less likely to occur. 2.

Book Nanotechnology   Society

    Book Details:
  • Author : Fritz Allhoff
  • Publisher : Springer Science & Business Media
  • Release : 2008-04-15
  • ISBN : 1402062087
  • Pages : 320 pages

Download or read book Nanotechnology Society written by Fritz Allhoff and published by Springer Science & Business Media. This book was released on 2008-04-15 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology & Society is a collection of sixteen papers focused on the most urgent issues arising from nanotechnology today and in the near future. Written by leading researchers, policy experts, and nanoethics scholars worldwide, the book is divided into five units: foundational issues; risk and regulation; industry and policy; the human condition; and selected global issues. The essays tackle such contentious issues as environmental impact, health dangers, medical benefits, intellectual property, professional code of ethics, privacy, international governance, and more.

Book Science and Technology of Separation Membranes

Download or read book Science and Technology of Separation Membranes written by Tadashi Uragami and published by John Wiley & Sons. This book was released on 2017-02-10 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive overview of membrane science and technology from a single source Written by a renowned author with more than 40 years’ experience in membrane science and technology, and polymer science Covers all major current applications of membrane technology in two definitive volumes Includes academic analyses, applications and practical problems for each existing membrane technology Includes novel applications such as membrane reactors, hybrid systems and optical resolution as well as membrane fuel cells

Book Carbon Nanotubes

Download or read book Carbon Nanotubes written by Michael J. O’Connell and published by CRC Press. This book was released on 2018-10-03 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.

Book Energy Materials Coordinating Committe  EMaCC   Fiscal Year 2000 Annual Technical Report

Download or read book Energy Materials Coordinating Committe EMaCC Fiscal Year 2000 Annual Technical Report written by and published by DIANE Publishing. This book was released on with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanocarbon Electronics

Download or read book Nanocarbon Electronics written by Changjian Zhou and published by CRC Press. This book was released on 2020-12-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of research on applications of carbon nanotubes (CNTs) and graphene to electronic devices. As nanocarbons in general, and CNTs and graphene in particular, are becoming increasingly recognized as the most promising materials for future generations of electronic devices, including transistors, sensors, and interconnects, a knowledge gap still exists between the basic science of nanocarbons and their feasibility for cost-effective product manufacturing. The book highlights some of the issues surrounding this missing link by providing a detailed review of the nanostructure and electronic properties, materials, and device fabrication and of the structure–property–application relationships.

Book Integrated Microsystems

    Book Details:
  • Author : Krzysztof Iniewski
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351833561
  • Pages : 762 pages

Download or read book Integrated Microsystems written by Krzysztof Iniewski and published by CRC Press. This book was released on 2017-12-19 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: As rapid technological developments occur in electronics, photonics, mechanics, chemistry, and biology, the demand for portable, lightweight integrated microsystems is relentless. These devices are getting exponentially smaller, increasingly used in everything from video games, hearing aids, and pacemakers to more intricate biomedical engineering and military applications. Edited by Kris Iniewski, a revolutionary in the field of advanced semiconductor materials, Integrated Microsystems: Electronics, Photonics, and Biotechnology focuses on techniques for optimized design and fabrication of these intelligent miniaturized devices and systems. Composed of contributions from experts in academia and industry around the world, this reference covers processes compatible with CMOS integrated circuits, which combine computation, communications, sensing, and actuation capabilities. Light on math and physics, with a greater emphasis on microsystem design and configuration and electrical engineering, this book is organized in three sections—Microelectronics and Biosystems, Photonics and Imaging, and Biotechnology and MEMs. It addresses key topics, including physical and chemical sensing, imaging, smart actuation, and data fusion and management. Using tables, figures, and equations to help illustrate concepts, contributors examine and explain the potential of emerging applications for areas including biology, nanotechnology, micro-electromechanical systems (MEMS), microfluidics, and photonics.

Book Advanced Composite Materials and Technologies for Aerospace Applications

Download or read book Advanced Composite Materials and Technologies for Aerospace Applications written by Richard Day and published by Lulu.com. This book was released on 2012 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Second International Conference on Advanced Composite Materials and Technologies for Aerospace Applications held at Glynd