EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improving the Efficiency of Fall Applied Nitrogen with Cover Crops

Download or read book Improving the Efficiency of Fall Applied Nitrogen with Cover Crops written by Corey G. Lacey and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nitrate loss studies in Midwestern tile-drained fields have found that fall applied nitrogen (N) resulted in elevated nitrate concentrations in tile water during both the corn and soybean year of a 2 year rotation. The effectiveness of cover crops to reduce nitrate leaching when N is spring applied has been well demonstrated, however there is a dearth of knowledge on the ability of cover crops to reduce nitrate leaching in a system where N is fall applied. Thus, the objectives of this research were to (i) investigate the efficacy of winter cover crops to reduce nitrate leaching from fall applied nitrogen and (ii) investigate the impact of cover crops on N mineralization in the spring before planting main crops. The experimental site was located at the Illinois State University Research and Teaching Farm in Lexington, IL. All treatments received fall nitrogen at a rate of 200 kg ha-1 into standing cereal rye, tillage radish and control (no cover crop). Cover crops were sampled and analyzed for total nitrogen to calculate N-uptake. Soil samples were collected during the fall and spring months and analyzed for nitrate and ammonium. Despite variable weather conditions, both cover crop treatments demonstrated the potential to reduce nitrate leaching compared to a no cover crop control. The tillage radish treatment resulted in consistently greater soil inorganic N compared to other treatment immediately before planting. In contrast, cereal rye residue slowly decomposed over time and resulted in a slower rate of mineralization. Therefore, both cover crop species increased the efficiency of fall applied N by reducing nitrate leaching and increasing inorganic N at the soil surface.

Book Managing Cover Crops Profitably  3rd Ed

Download or read book Managing Cover Crops Profitably 3rd Ed written by Andy Clark and published by DIANE Publishing. This book was released on 2008-07 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cover crops slow erosion, improve soil, smother weeds, enhance nutrient and moisture availability, help control many pests and bring a host of other benefits to your farm. At the same time, they can reduce costs, increase profits and even create new sources of income. You¿ll reap dividends on your cover crop investments for years, since their benefits accumulate over the long term. This book will help you find which ones are right for you. Captures farmer and other research results from the past ten years. The authors verified the info. from the 2nd ed., added new results and updated farmer profiles and research data, and added 2 chap. Includes maps and charts, detailed narratives about individual cover crop species, and chap. about aspects of cover cropping.

Book Winter Cover Crops Impact on the Distribution of Soil Inorganic Nitrogen and Subsequent Crop Uptake and Yield Following Fall Applied Anhydrous Ammonium

Download or read book Winter Cover Crops Impact on the Distribution of Soil Inorganic Nitrogen and Subsequent Crop Uptake and Yield Following Fall Applied Anhydrous Ammonium written by William T. Deppe and published by . This book was released on 2016 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pairing of cover crops with spring application of nitrogen has shown improved nitrogen efficiency in corn production systems. However, studies have shown that only 50% of central Illinois farmers practice spring application of nitrogen. Furthermore, the literature demonstrates that in years with above average rainfall, fall applied N management systems are more susceptible to N loading relative to spring systems. Therefore, the objective of this research was to determine the efficacy of winter cover crops to impact the distribution of soil inorganic N following fall applied anhydrous ammonium. The experimental site is located at the Illinois State University Research and Teaching Farm in Lexington, IL. The treatments consisted of a control, daikon radish, cereal rye and a cereal rye/daikon radish mixture. All treatments received a fall application of 200 kg N ha-1 in the form of anhydrous ammonia. Soil samples were collected in the spring at four separate depths and were analyzed for inorganic N. At the 0-5cm depth, we determined that tillage radish resulted in 18% greater soil NO3- relative to the control. In the environmental depth of 20-80cm, we observed that fall applying N into a living cover crop resulted in 35% (cereal rye) and 22% (daikon radish) less soil NO3- when compared to the control. In 2014 and 2015, each treatment was further divided into three nitrogen rate subplots: 200, 145 and 90 kg N ha-1. However, no obvious trend within the rate applied (90, 145 and 200 kg ha-1) was observed. After four consecutive years of established cover crops, corn uptake and yield data was collected. On average the addition of daikon radish at 200 kg N ha-1 increased total crop uptake by 20%; while the inclusion of cereal rye despite application rate significantly (P= 0.0021) increased total N at R6. Consequently, sampling at harvest (2014) demonstrated the capacity of the cover crops (cereal rye, P= 0.0323) despite rate to increase the crop yielding potential 3-6%. Over a four year period, winter cover crops reduced nitrate leaching and stabilized a greater concentration of soil NO3- in the agronomic depths following fall applied N, relative to the control. The results of this study also suggest that cover crop inclusion into a fall applied system has the potential to advance nitrogen use efficiency, yield and profitability.

Book Nitrogen in Agricultural Systems

Download or read book Nitrogen in Agricultural Systems written by James Stuart Schepers and published by ASA-CSSA-SSSA. This book was released on 2008 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review of the principles and management implications related to nitrogen in the soil-plant-water system.

Book Winter Cereal Cover Crops and Nitrogen Management Practices for Increasing Farm Profit and Minimizing Nitrogen Losses in Corn soybean Agroecosystems

Download or read book Winter Cereal Cover Crops and Nitrogen Management Practices for Increasing Farm Profit and Minimizing Nitrogen Losses in Corn soybean Agroecosystems written by Oladapo Adeyemi and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winter cereal cover crops (WCCCs) could provide extra profit by being harvested as forage or for biofuel purposes, could benefit soil, and the following cash crops, and are considered an effective practice in reducing the nitrate-N (NO3-N) leaching especially in corn (Zea mays L.) and soybean (Glycine max L.) fields. The extend at which WCCCs and their residue management (e.g. harvesting vs. terminating at different times) improve farm profit, influence the following cash crop, especially corn is less studied. Also, literature is scant on the residue management effects on NO3-N leaching potential and its tradeoff with soil nitrous oxide (N2O) emissions especially in Alfisols with claypans. Two trials (chapter 1-2) were conducted to evaluate the time of harvest of winter wheat (Triticum aestivum L.) or winter cereal rye (WCR; Secale cereale L.) to determine the best time of harvest for maximizing profit through improving biomass production at high quality. In chapter 1, a five site-yr trial was conducted in Colorado (CO) and Illinois (IL) to evaluate the effect of harvest date on WCR forage yield, quality, and its economic performance. From March to April, WCR dry matter (DM) yield increased exponentially in CO and linearly in IL. The DM yield at DOY 112-116 in CO was 6.9, 5.0, and 5.2 Mg ha-1 in 2018, 2019, and 2020, respectively compared to 4.7 and 2.7 Mg ha-1 in IL in 2019 and 2020. Delayed harvesting increased acid detergent fiber (ADF) and neutral detergent fiber (NDF) concentrations and decreased crude protein (CP), total digestible nutrients (TDN), and relative feed quality (RFQ). Yield-quality trade-off showed that forage yield increased rapidly but forage quality declined after DOY 105-108. Economic analysis, including cost of nutrient removal and 10% corn yield penalty following WCR production revealed harvesting WCR biomass as forage was economically feasible in four out of five site-yrs at hay price over 132 $ Mg-1. Eliminating corn yield penalty indicated profitability in four site-yrs at hay price of ≥110 $ Mg-1 and removing nutrient removal costs made all site-yrs profitable at hay price of ≥110 $ Mg-1. It was concluded that harvesting WCR biomass can be a profitable and effective strategy for sustainable intensification that can offer environmental stewardship and economic benefit. In chapter 2, a four-year trial was conducted in the 2017-2018, 2018-2029, 2019-2020, and 2020- 2021 growing seasons to evaluate the effect of harvesting time (late-March to mid-May considering the growth stage) on winter wheat biomass yield, quality, and farm profit in single season corn vs. wheat-corn rotation. A delay in harvest of wheat resulted in increased DM biomass and lower CP and RFQ. The RFQ that was suitable for dairy production occurred at GDD of 1849 in which the DM biomass was 6.2 Mg ha-1 leading to $1526.46 ha-1 income. The RFQ for heifer production was 126 at 2013 GDD in which the DM biomass was 6.8 Mg ha-1 leading to $1290.85 ha-1 income. These results suggested that wheat-corn rotation could provide extra income while covering the soil year-round. A series of trials were conducted to evaluate the effects of cover crop (CC) and nitrogen (N) management on (i) corn growth, (ii) grain yield and yield components, (iii) the economic optimum N rate (EONR) for corn and farm profit, (iv) N removal, and balances, (v) N use metrics, (vi) soil NO3-N and ammonium-N (NH4-N), along with (vii) N2O emissions and factors associated with it. In chapter 3, an experiment was conducted as a randomized complete block design with split plot arrangement and four replicates to study winter wheat cover crop management practices on corn growth, production, N requirement, soil N, and farm profit. The main plots were four CC treatments: no CC (control), early terminated wheat CC (four weeks to corn planting; ET), late terminated wheat CC (just prior to corn planting; LT), and harvested wheat CC (residue removal; RR), and the subplots were six N fertilizer application rates (0-280 kg N ha-1 ) for 2018 and 2019 and seven N fertilizer application rates (0-336 kg N ha-1 ) for 2020 and 2021. Wheat cover crop management influenced corn grain yield where fallow was consistently high yielding while RR decreased corn grain yield drastically due to its negative effects on the corn plant population. All cover crop treatments immobilized N as shown by lower corn grain yields at zero-N control compared to the fallow treatment. The EONR generally ranged from 151.4 kg ha-1 to 206.4 kg ha-1 in fallow, 192.8 kg ha-1 to 275.8 kg ha-1 in ET, 225 kg ha-1 to 325 kg ha-1 in LT, and 175.3 kg ha-1 to 257.5 kg ha-1 in RR. At the EONR, corn grain yields ranged from 12.2 Mg ha-1 to 13.7 Mg ha-1 in the fallow treatment, 9.7 Mg ha-1 to 13.0 Mg ha-1 in the ET, 9.51 Mg ha-1 to 13.3 Mg ha-1 in the LT, and 8.2 Mg ha-1 to 10.5 Mg ha-1 in the RR treatment. Adding N beyond EONR resulted in a drastic increase in end of season soil N which could be subject to leaching emphasizing targeting EONR is critical for avoiding high N leaching and that if N is applied at rates beyond EONR, then cover cropping becomes even a more critical practice to avoid N losses. In chapter 4 and 5, we evaluated whether splitting N fertilization along with the two (no-cover crop vs. early termination; ET) (chapter 4) or four above-mentioned cover crops treatments (chapter 5) could improve corn production and farm profit through improved N use efficiency (NUE). Therefore, for chapter 4, a two-yr field trail was implemented at the Agronomy Research Center in Carbondale, IL in 2018 and 2019 to evaluate whether split N application to corn changes N use efficiency (NUE) in no-cover crop vs. following an early terminated (ET) wheat cover crop. A four-replicated randomized completed block design with split plot arrangements were used. Main treatments were a no cover crop (control) vs. ET and subplots were five N timing applications to succeeding corn: (1) 168 kg N ha-1 at planting; (2) 56 kg N ha-1 at planting + 112 kg N ha-1 at sidedress; (3) 112 kg N ha-1 at planting + 56 kg N ha-1 at sidedress (4) 168 kg N ha-1 at sidedress, and (5) zero kg N ha-1 (control). Corn yield was higher in 2018 than 2019 reflecting more timely precipitation in that year. Grain yield declined by 12.6% following the wheat cover crop compared to no cover crop control indicating corn yield penalty when wheat was planted prior to corn. In 2018, a year with timely and sufficient rainfall, there were no differences among N application timing while in 2019, delaying the N addition improved NUE and corn grain yield due to excessive rainfall early in the season reflecting on N losses. Overall, our findings elucidate necessity of revisiting guidelines for current N management practices in Midwestern United States and incorporating cover crop component into MRTN prediction tool. For chapter 5, a four-year trial conducted with a split plot arrangement and four replicates. Main plots were four cover crop management [no cover crop control (fallow); ET, late termination (LT), and residue removal at late termination (RR) and five N fertilizer application timings (all at planting, most at planting + sidedress; half-half; less at planting and more at sidedress; and all sidedress). Our results indicated that RR resulted in corn population and grain yield reduction compared to other treatments. Fallow was consistently high-yielding and 112-56 N management during the first two years for fallow worked the best (10.1 Mg ha-1 ). In 2020 and 2021, both applying all N upfront or sidedressing yielded similar for fallow giving growers options with N timing. For both ET and LT, in all years, delaying the N addition to sidedress timing resulted in high yields (9.1 - 11.7 Mg ha-1 ). Some N addition upfront plus sidedressing the rest (56-168) resulted in the highest yield in ET in 2021 (11.6 Mg ha-1 ). For RR, split application of N (56-112 or 56-168) was consistently most productive in all years (8.7 Mg ha-1 ) suggesting that there is an advantage to sidedressing than upfront N application in cover crop systems. The high productive N management practices generally resulted in higher NUE (24.0 - 38.6 kg grain kg N-1 ) and lower N balance (20.6 - 50.2 kg ha-1 for 2018-2019, and 74 - 106.4 kg ha-1 for 2020-2021) which are critical to achieve not only for farm profit but also minimizing environmental footprints. Except for N0, N balance was positive in all treatments in all years indicating the inefficiency of fertilizer N that was corroborated by low NUE and PFP data. We concluded that to optimize corn production and reducing nutrient loss, split N addition or sidedressing N is most suitable especially in cover cropping systems. For chapter six, a four-times replicated randomized complete block design trial was conducted to evaluate the effects of winter wheat cover crop management practices (ET, LT, and RR) vs. a no-cover crop control (fallow) on corn grain yield, N removal and balances, soil N dynamics, soil volumetric water content (VWC) and temperature dynamics, N2O-N emissions, yield-scaled N2O-N emissions, and factors that drive N2O-N and corn grain yield in 2019-2020 and 2020-2021 growing seasons in a silt loam soil with clay and fragipans. Our results indicated that corn grain yield decreased by both ET and RR as compared to the fallow and LT. Soil temperature was similar among all treatments, but soil VWC was higher in LT and ET than fallow and RR. The LT treatment always had lower soil NO3-N than the other treatments in both years. In 2021, the ET also had less soil nitrate-N than fallow and RR. Averaged over the two years, cumulative soil N2O-N was higher in LT (14.85 kg ha-1 ) and ET (12.85 kg ha-1 ) than RR (11.10 kg ha-1 ) and fallow (7.65 kg ha-1 ) indicating while these treatments are effective in reducing NO3-N leaching, they could increase soil N2O-N emissions. Principal component analysis indicated that higher N2O-N emissions in LT and ET was related to higher VWC suggesting at optimal N management scenarios, other factors than soil N drive N2O-N emissions. In this study, fallow had the least yield-scaled N2O-N emissions followed by RR. The yield-scaled emissions were similar between ET and LT. These results indicate the importance of evaluating N2O-N emissions in cereal cover crops prior to corn for informing best management practice for winter cereal cover crop adoption. Future studies should focus on manipulating cover crop management to capture residual N without creating microclimates with high VWC to avoid increase of N2O-N emissions. While a lot is known about CC effects on the following cash crop, less is known about rotational benefits of late terminated (planting green) wheat and nitrogen (N) management on the following WCR and soybean in rotation. Therefore, for chapter 7, a trial was conducted with a split plot arrangement in a randomized complete block design set up. The main plots were two cover crop treatments (a no cover crop control vs. LT) and the subplots were three N rates [0 (N0), 224 (N224), and 336 (N336) kg N ha-1 ). Each treatment was replicated four times and rye and soybean was planted in all of the plots in rotation. Our results indicated wheat, when terminated late, can uptake 50-80 kg N ha-1 and result in belowground:aboveground ratio of 0.18 in which belowground had much higher C:N than the aboveground biomass. The soil NO3-N was affected by wheat presence and often reduced due to wheat N uptake and also N immobilization negatively affecting the following corn especially at both N0 and N224. Nitrogen fertilization at 336 kg N ha-1 resulted in high end of season N, reduced NUE, increased N balance, and thus, potential for N loss especially in the fallow treatment. The end of season N was lower and NUE was higher in LT which was coincided with reduced rye N uptake in LT suggesting wheat effect lingers longer than just during the corn season and could potentially reduce N loss potential during the fallow period following corn harvest. Soybean yields were higher in LT than the fallow which could be due to (i) higher rye biomass in fallow or (ii) positive legacy effect of wheat in rotation. Improved soybean yields could offset some of the economic loss during the corn phase and push growers in the Midwestern USA to be willing to adopt cover cropping to minimize N loss while protecting soil and stay profitable. Our results from chapter 3-7, indicate a need to change in cover crop management strategy to make it more user friendly with lower costs. In general, in the Midwestern USA, growers are reluctant to plant WCR especially prior to corn due to N immobilization and establishment issues. Precision planting of WCR or --Skipping the corn row‖ (STCR) can minimize some issues associated with WCR ahead of corn while reducing cover crop seed costs. The objective of this study was to compare the effectiveness of --STCR‖ vs. normal planting of WCR at full seeding rate (NP) on WCR biomass, nutrient uptake, and composition in three site-yrs (ARC2019, ARC2020, BRC2020). Our results indicated no differences in cover crop dry matter (DM) biomass production between the STCR (2.40 Mg ha-1 ) and NP (2.41 Mg ha-1 ) supported by similar normalized difference vegetative index (NDVI) and plant height for both treatments. Phosphorus, potassium (K), calcium (Ca), and magnesium (Mg) accumulation in aboveground biomass was only influenced by site-yr and both STCR and NP removed similar amount of P, K, Ca, and Mg indicating STCR could be as effective as NP in accumulating nutrients. Aboveground carbon (C) content (1086.26 kg h-1 average over the two treatments) was similar between the two treatments and only influenced by site-yr differences. Lignin, lignin:N, and C:N ratios were higher in STCR than NP in one out of three site-years (ARC2019) indicating greater chance of N immobilization when WCR was planted later than usual. Implementing STCR saved 8.4 $ ha-1 for growers and could incentivize growers to adopt this practice. Future research should evaluate corn response to STCR compared with NP and assess if soil quality declines by STCR practice over time.

Book Nitrogen Use and Behavior in Crop Production

Download or read book Nitrogen Use and Behavior in Crop Production written by L. Fred Welch and published by . This book was released on 1979 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most plants absorbmore nitrogen than any other nutrient. Because the amount needed is so large and easily be lost from many soils, nitrogen is usually the most limiting nutrient for plant growth. Although about 79 percent of the atmosphere is nitrogen, only nitrogen-fixingplants such as legumeswith their associated bacteria are able to use this abundant source. The nonleguminous grain crops must receive supplemental nitrogen to produce satisfactory yields. Until the last few decades the supply of available nitrogen in the soil was increased primarily by legumes and manure. These sources should be used when economically feasible, but many important grain-producing areas of the world must now rely on commercial fertilizer nitrogen. For economic reasons researchers and growers have been interested for many years in improving yields from each unit of nitrogen. Recently, however, the efficient use of nitrogen has become an environmental issue as well, because high nitrate concentrations in water may be harmful to humans, especiali infants, and to livestock. If plants absorb more of the addedfertilizer nitrogen, then less is likely to leach from fields into drinking water. Improving nitrogen efficiency has also become crucial in order to conserve dwinling supplies of natural gas, which is used in large quantities to manufacture nitrogenfertilizers.

Book Cover Crops for Walnut Orchards

Download or read book Cover Crops for Walnut Orchards written by and published by UCANR Publications. This book was released on 2006 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Nitrogen Fertilizer Management to Improve Crop Production

Download or read book Efficient Nitrogen Fertilizer Management to Improve Crop Production written by Li Wang and published by Frontiers Media SA. This book was released on 2024-05-22 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: The improvement in global crop production over the past several decades has been associated with increased use of nitrogen (N) fertilizer. However, on average, less than 50% of the nitrogen added to croplands globally is harvested as crop product. Inefficient use of N fertilizer by crops will result in substantial agricultural nitrogen losses, posing threats to human and ecosystem health. Crop production must increase dramatically to meet the growing demand for food and biofuels projected for 2050. To boost crop yield with lowered environmental cost, the use of high-potential crop cultivars and efficient nitrogen fertilizer management are required. Recent advances in N management practices, such as enhanced-efficiency fertilizer use, improved manure management and machine deep placement of fertilizer have opened up new strategies to achieve improved crop production with N use reduction. A better understanding of the key crop traits and regulatory processes in response to N fertilizer managements will facilitate the increase in crop yield, N use efficiency while minimizing impacts on the environment.

Book Using Cover Crop Mixtures to Reduce Nitrate Leaching and Supply Nitrogen to Corn

Download or read book Using Cover Crop Mixtures to Reduce Nitrate Leaching and Supply Nitrogen to Corn written by Charles White and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Agriculture faces two great sustainability challenges: the ability to provide nutrition for a growing world population and the ability to increase ecosystem services that maintain clean air, clean water, and other benefits to humanity. Planting cover crops is one management practice that can contribute towards realizing the goal of increasing ecosystem services. However, to provide multiple ecosystem services and to manage tradeoffs between services, cover crops will need to be intensively managed. This dissertation develops models and tools that can support the adaptive management of cover crops to reduce nitrate (NO3-) leaching and supply nitrogen (N) to a subsequent corn crop through N mineralized from decomposing residues. Models were developed from a wide range of cover crop experiments carried out over 14 site years that included 39 different treatments of cover crop mixtures and monocultures composed from 18 different species of grasses, brassicas, and legumes. A model for potential NO3- leaching under cover crop mixtures indicated that increasing total non-legume biomass N content (sum of fall and spring N contents) of a cover crop reduced leaching at a rate of -0.91 kg NO3--N kg-1 biomass N, up to a threshold of 51 kg N ha-1 total non-legume biomass N, above which increasing non-legume biomass N had no further effect. In a model for relative corn yield following cover crop mixtures, relative yield was negatively related to fall and spring cover crop biomass carbon to nitrogen (C:N) ratios and positively related to soil carbon (C) concentration. In another model, the response of unfertilized corn yields to a previous cover crop, relative to fallow conditions, increased with cover crop biomass N content and a decreasing biomass C:N ratio, with regression models that were different for winterkilled and winterhardy cover crops due to differences between the cover crop types in the length of decomposition and the synchrony between decomposition and corn N demand. For these models to be applicable in an adaptive management process, farmers need to be able to rapidly and inexpensively measure cover crop biomass N content. A handheld NDVI meter was able to accurately predict biomass N content in fall and spring for a wide range of cover crop types. Coupling between C and N cycles also needs to be considered in relation to predicting N mineralization from decomposing cover crops and others forms of organic matter. In models that represent soil organic C saturation, regulation of the C humification efficiency by C saturation level affected a coupled N mineralization model in a way that depended on the model structure used. Under some model structures, N mineralization increases as the C saturation level increases, which could affect the extent to which cover crop residues supply N to subsequent crops. Collectively, these models provide a foundation that can support the adaptive management of cover crops to provide N-related ecosystem services.

Book Winter Cover Cropping in Processing Tomato Production

Download or read book Winter Cover Cropping in Processing Tomato Production written by Lydia Jean Stivers and published by . This book was released on 1989 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cover Crops to Enhance Soil Productivity in Organic Vegetable Cropping Systems

Download or read book Cover Crops to Enhance Soil Productivity in Organic Vegetable Cropping Systems written by Andrew James Lawson and published by . This book was released on 2010 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhancing the Efficiency of Nitrogen Utilization in Plants

Download or read book Enhancing the Efficiency of Nitrogen Utilization in Plants written by Sham S. Goyal and published by CRC Press. This book was released on 2006-08-22 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advancements and innovations in regulating the nitrogen levels in your crops Enhancing the Efficiency of Nitrogen Utilization in Plants examines current research to present an overview of inorganic nitrogen uptake and metabolism in plant life and crop production. This comprehensive resource is divided into sections for quick and easy reference, focusing on physiology and adaptive mechanisms, molecular genetics, and applied aspects. The world’s leading experts in agronomy, crop science, and plant physiology analyze the most effective methods and management practices to ensure maximum plant growth and production. Enhancing the Efficiency of Nitrogen Utilization in Plants develops links between basic and applied research and practical crop production. This unique book addresses a wide range of topics that relate to nitrogen use efficiency, and to plant and crop responses to applications of nitrogen via fertilizers, including nitrogen acquisition and reduction; crop rotation; molecular approaches, genetics, and markers; balanced fertilization and controlled-release fertilizers; nitrogen decline, supply, and demand; crop breeding; radiation use; nutrient deficiency and toxicity; nitrate induction and signaling; nitrogen transport; and nitrogen use at the leaf and canopy level . Enhancing the Efficiency of Nitrogen Utilization in Plants examines: plant responses to changes in the supply of the two inorganic nitrogen sources of nitrate and ammonium root system control mechanisms of nitrogen uptake nitrate uptake and reduction in higher and lower plants how nitrogen affects biomass production in a canopy nitrogen’s effects on radiation interception and radiation use efficiency senescence and photosynthesis the regulation of nitrogen and carbon metabolisms by sugars and nitrogen metabolites integrated nitrogen fertilization the use of legumes for soil improvement root system control mechanisms fertility and crop nutrient demand chemical and biological processes that influence nitrogen transformation or loss the use of simulation models to measure water and nutrient transport in soils and much more Enhancing the Efficiency of Nitrogen Utilization in Plants is an invaluable classroom aid for academics working in plant physiology and agronomy, and an essential professional resource for researchers working in plant and crop production.

Book Plant Salt Tolerance

    Book Details:
  • Author : Sergey Shabala
  • Publisher : Humana Press
  • Release : 2012-08-16
  • ISBN : 9781617799853
  • Pages : 0 pages

Download or read book Plant Salt Tolerance written by Sergey Shabala and published by Humana Press. This book was released on 2012-08-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil salinity is destroying several hectares of arable land every minute. Because remedial land management cannot completely solve the problem, salt tolerant crops or plant species able to remove excessive salt from the soil could contribute significantly to managing the salinity problem. The key to engineering crops for salt tolerance lies in a thorough understanding of the physiological mechanisms underlying the adaptive responses of plants to salinity. Plant Salt Tolerance: Methods and Protocols describes recent advances and techniques employed by researchers to understand the molecular and ionic basis of salinity tolerance and to investigate the mechanisms of salt stress perception and signalling in plants. With chapters written by leading international scientists, this book covers nearly 30 different methods, such as microelectrode and molecular methods, imaging techniques, as well as various biochemical assays. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Plant Salt Tolerance: Methods and Protocols serves as an essential read for every student or researcher tackling various aspects of the salinity problem.

Book Nitrogen Fixing Winter Cover Crops and Production Risk

Download or read book Nitrogen Fixing Winter Cover Crops and Production Risk written by James A. Larson and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winter legumes can substitute for applied nitrogen fertilization of corn. Stochastic dominance was used to order net revenues from legume and applied nitrogen alternatives. Stochastic dominance orderings indicate that systems combining vetch with low applied nitrogen fertilization (50 and 100 pounds/acre, respectively) were risk inefficient. By contrast, vetch and 150 pounds/acre applied nitrogen maximized expected net revenue and was risk efficient for a wide range of risk-averse and risk-seeking behavior. Farmers with these risk attitudes may not reduce applied nitrogen if they switch to a vetch cover. Extremely risk-averse or risk-seeking farmers would not prefer winter legumes.

Book Soil Fertility Management in Agroecosystems

Download or read book Soil Fertility Management in Agroecosystems written by Amitava Chatterjee and published by John Wiley & Sons. This book was released on 2020-05-19 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Soil Fertility Management in Agroecosystems, Editors Amitava Chatterjee and David Clay provide a thoughtful survey of important concepts in soil fertility management. For the requirements of our future workforce, it is imperative that we evolve our understanding of soil fertility. Agronomists and soil scientists are increasingly challenged by extreme climatic conditions. Farmers are experimenting with integrating cover crops into rotations and reducing the use of chemical fertilizers. In other words, there is no such a thing as a simple fertilizer recommendation in today's agriculture. Topics covered include crop-specific nutrient management, program assessment, crop models for decision making, optimization of fertilizer use, cover crops, reducing nitrous oxide emissions, natural abundance techniques, tile-drained conditions, and soil biological fertility.

Book Nitrogen Management in Crop Production

Download or read book Nitrogen Management in Crop Production written by Nand Kumar Fageria and published by CRC Press. This book was released on 2014-06-25 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the main approaches for safeguarding food security, sustainable development has increased demand for knowledge on fertilizer management in crop production. Among essential plant nutrients, nitrogen is one of the most important yield-limiting nutrients, mainly responsible for determining yield and yield components in cereals and legumes. It is also responsible for the activation of many enzymes and, of course, plays an important role in photosynthesis. With a recovery efficiency of less than 50 percent in most cropping systems, a large portion of the nitrogen applied as fertilizer is not used by plants, creating environmental and economic issues. Nitrogen Management in Crop Production covers the critical aspects for the judicious use of nitrogen in cropping systems. This includes appropriate methods of nitrogen application, effective source and timing of application during crop growth cycles, use of an adequate application rate to avoid loss and reduce cost, use of nitrogen-efficient crop genotypes, and use of legumes that fix sufficient amounts of atmospheric nitrogen. There is also a chapter on organic matter and its role in sustainability. This book presents recent information from the international literature, making it relevant for most agroecological regions. Chapters provide experimental results to aid in practical application of the information. The book contains color photos of nitrogen deficiency symptoms to serve as a guide for important crop species, such as rice, dry bean, wheat, soybean, and corn. It also includes numerous tables and figures, providing an easy-to-read reference.