EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Positron Emission Tomography

    Book Details:
  • Author : Dale L. Bailey
  • Publisher : Springer Science & Business Media
  • Release : 2006-07-06
  • ISBN : 1846280079
  • Pages : 381 pages

Download or read book Positron Emission Tomography written by Dale L. Bailey and published by Springer Science & Business Media. This book was released on 2006-07-06 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book invaluable. This book is primarily repackaged content from the Basic Science section of the 'big' Valk book on PET. It contains new, completely revised and unchanged chapters covering the "basic sciences" section of the main book - total 18 chapters: 2 new (chapters 1, 16) 8 completely revised (chapters 4, 5, 8, 13, 14, 15, 17, 18) 3 minor corrections (chapters 2, 6, 11) 5 unchanged (chapters 3, 7, 9, 10, 12)

Book The Theory and Practice of 3D PET

Download or read book The Theory and Practice of 3D PET written by B. Bendriem and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.

Book Medical Image Reconstruction

Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.

Book Mathematical Methods in Image Reconstruction

Download or read book Mathematical Methods in Image Reconstruction written by Frank Natterer and published by SIAM. This book was released on 2001-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a superior understanding of the mathematical principles behind imaging.

Book Emission Tomography

    Book Details:
  • Author : Miles N. Wernick
  • Publisher : Elsevier
  • Release : 2004-12-07
  • ISBN : 0080521878
  • Pages : 597 pages

Download or read book Emission Tomography written by Miles N. Wernick and published by Elsevier. This book was released on 2004-12-07 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork

Book The Radon Transform and Medical Imaging

Download or read book The Radon Transform and Medical Imaging written by Peter Kuchment and published by SIAM. This book was released on 2014-03-20 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the main mathematical ideas and techniques behind some well-established imaging modalities such as X-ray CT and emission tomography, as well as a variety of newly developing coupled-physics or hybrid techniques, including thermoacoustic tomography. The Radon Transform and Medical Imaging emphasizes mathematical techniques and ideas arising across the spectrum of medical imaging modalities and explains important concepts concerning inversion, stability, incomplete data effects, the role of interior information, and other issues critical to all medical imaging methods. For nonexperts, the author provides appendices that cover background information on notation, Fourier analysis, geometric rays, and linear operators. The vast bibliography, with over 825 entries, directs readers to a wide array of additional information sources on medical imaging for further study.

Book Image Reconstruction

    Book Details:
  • Author : Gengsheng Lawrence Zeng
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2017-03-20
  • ISBN : 3110498022
  • Pages : 289 pages

Download or read book Image Reconstruction written by Gengsheng Lawrence Zeng and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-20 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing

Book Fundamentals of Computerized Tomography

Download or read book Fundamentals of Computerized Tomography written by Gabor T. Herman and published by Springer Science & Business Media. This book was released on 2009-07-14 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and updated second edition – now with two new chapters - is the only book to give a comprehensive overview of computer algorithms for image reconstruction. It covers the fundamentals of computerized tomography, including all the computational and mathematical procedures underlying data collection, image reconstruction and image display. Among the new topics covered are: spiral CT, fully 3D positron emission tomography, the linogram mode of backprojection, and state of the art 3D imaging results. It also includes two new chapters on comparative statistical evaluation of the 2D reconstruction algorithms and alternative approaches to image reconstruction.

Book Mathematics and Computer Science in Medical Imaging

Download or read book Mathematics and Computer Science in Medical Imaging written by Max A. Viergever and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging is an important and rapidly expanding area in medical science. Many of the methods employed are essentially digital, for example computerized tomography, and the subject has become increasingly influenced by develop ments in both mathematics and computer science. The mathematical problems have been the concern of a relatively small group of scientists, consisting mainly of applied mathematicians and theoretical physicists. Their efforts have led to workable algorithms for most imaging modalities. However, neither the fundamentals, nor the limitations and disadvantages of these algorithms are known to a sufficient degree to the physicists, engineers and physicians trying to implement these methods. It seems both timely and important to try to bridge this gap. This book summarizes the proceedings of a NATO Advanced Study Institute, on these topics, that was held in the mountains of Tuscany for two weeks in the late summer of 1986. At another (quite different) earlier meeting on medical imaging, the authors noted that each of the speakers had given, there, a long introduction in their general area, stated that they did not have time to discuss the details of the new work, but proceeded to show lots of clinical results, while excluding any mathematics associated with the area.

Book Medical Imaging Systems

Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.

Book Basic Sciences of Nuclear Medicine

Download or read book Basic Sciences of Nuclear Medicine written by Magdy M. Khalil and published by Springer Nature. This book was released on 2021-05-26 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive and detailed information on the scientific bases of nuclear medicine, addressing a wide variety of topics and explaining the concepts that underlie many of the investigations and procedures performed in the field. The book is divided into six sections that cover the physics and chemistry of nuclear medicine besides associated quality assurance/quality control procedures; dosimetry and radiation biology; SPECT and PET imaging instrumentation plus CT imaging technology in hybrid modalities; data analysis including image processing, reconstruction, radiomics, image degrading correction techniques, along with image quantitation and kinetic modeling. Within these sections, particular attention is paid to recent developments and the advances in knowledge that have taken place since release of the first edition in 2011. Several entirely new chapters have been included and the remaining chapters, thoroughly updated. Innovations in the ever-expanding field of nuclear medicine are predominantly due to integration of the basic sciences with complex technological advances. This excellently illustrated book on the subject will be of interest to not only nuclear medicine physicists and physicians but also clinical scientists, radiologists, radiopharmacists, medical students and technologists.

Book Basic Science of PET Imaging

Download or read book Basic Science of PET Imaging written by Magdy M. Khalil and published by Springer. This book was released on 2016-11-07 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a wide-ranging and up-to-date overview of the basic science underlying PET and its preclinical and clinical applications in modern medicine. In addition, it provides the reader with a sound understanding of the scientific principles and use of PET in routine practice and biomedical imaging research. The opening sections address the fundamental physics, radiation safety, CT scanning dosimetry, and dosimetry of PET radiotracers, chemistry and regulation of PET radiopharmaceuticals, with information on labeling strategies, tracer quality control, and regulation of radiopharmaceutical production in Europe and the United States. PET physics and instrumentation are then discussed, covering the basic principles of PET and PET scanning systems, hybrid PET/CT and PET/MR imaging, system calibration, acceptance testing, and quality control. Subsequent sections focus on image reconstruction, processing, and quantitation in PET and hybrid PET and on imaging artifacts and correction techniques, with particular attention to partial volume correction and motion artifacts. The book closes by examining clinical applications of PET and hybrid PET and their physiological and/or molecular basis in conjunction with technical foundations in the disciplines of oncology, cardiology and neurology, PET in pediatric malignancy and its role in radiotherapy treatment planning. Basic Science of PET Imaging will meet the needs of nuclear medicine practitioners, other radiology specialists, and trainees in these fields.

Book Three Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Download or read book Three Dimensional Image Reconstruction in Radiology and Nuclear Medicine written by Pierre Grangeat and published by Springer. This book was released on 2010-12-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of communications presented at the Third International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, held 4-6 July 1995 at Domaine d' Aix-Marlioz, Aix-Ies-Bains, France. This nice resort provided an inspiring environment to hold discussions and presentations on new and developing issues. Roentgen discovered X-ray radiation in 1895 and Becquerel found natural radioactivity in 1896 : a hundred years later, this conference was focused on the applications of such radiations to explore the human body. If the physics is now fully understood, 3D imaging techniques based on ionising radiations are still progressing. These techniques include 3D Radiology, 3D X-ray Computed Tomography (3D-CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET). Radiology is dedicated to morphological imaging, using transmitted radiations from an external X-ray source, and nuclear medicine to functional imaging, using radiations emitted from an internal radioactive tracer. In both cases, new 3D tomographic systems will tend to use 2D detectors in order to improve the radiation detection efficiency. Taking a set of 2D acquisitions around the patient, 3D acquisitions are obtained. Then, fully 3D image reconstruction algorithms are required to recover the 3D image of the body from these projection measurements.

Book Foundations of Image Science

Download or read book Foundations of Image Science written by Harrison H. Barrett and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 1857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and statistics needed to understand and evaluate imaging systems. The book is the first to provide a thorough treatment of the continuous-to-discrete, or CD, model of digital imaging. Foundations of Image Science emphasizes the need for meaningful, objective assessment of image quality and presents the necessary tools for this purpose. Approaching the subject within a well-defined theoretical and physical context, this landmark text presents the mathematical underpinnings of image science at a level that is accessible to graduate students and practitioners working with imaging systems, as well as well-motivated undergraduate students. Destined to become a standard text in the field, Foundations of Image Science covers: Mathematical Foundations: Examines the essential mathematical foundations of image science Image Formation–Models and Mechanisms: Presents a comprehensive and unified treatment of the mathematical and statistical principles of imaging, with an emphasis on digital imaging systems and the use of SVD methods Image Quality: Provides a systematic exposition of the methodology for objective or task-based assessment of image quality Applications: Presents detailed case studies of specific direct and indirect imaging systems and provides examples of how to apply the various mathematical tools covered in the book Appendices: Covers the prerequisite material necessary for understanding the material in the main text, including matrix algebra, complex variables, and the basics of probability theory

Book Principles of Computerized Tomographic Imaging

Download or read book Principles of Computerized Tomographic Imaging written by Avinash C. Kak and published by SIAM. This book was released on 2001-01-01 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, tutorial-style introduction to the algorithms necessary for tomographic imaging.

Book Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy

Download or read book Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy written by Yuji Kuge and published by Springer. This book was released on 2016-04-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This work is devoted to understanding the recent advances in nuclear medicine and molecular imaging technologies along with their application to integrated medical therapy and future drug development. This anthology is based on the international symposium in 2015 entitled “Perspective on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy. “The symposium provided an opportunity to exchange ideas on how to promote nuclear medicine technology and how to extend the technology to medical therapy and drug development, and was also a good opportunity to discuss the future perspective of nuclear medicine and molecular imaging by worldwide leaders in the field. Molecular imaging technologies have been rapidly developed worldwide in recent years. Among those developments, nuclear medicine has come to play an important role in quantitative analysis of biological process in vivo as well as in wide clinical use. With the current progress of nuclear medicine and molecular imaging, this modality has been applied for treatment monitoring and predicting its outcome with the use of optimal imaging biomarkers and suitable quantitative analysis. Truly, a new era has arrived with clinical use of nuclear medicine and molecular imaging for personalized medicine. This volume will benefit a wide variety of researchers in life science including those working in drug development, molecular imaging, and medical therapy as well as physicians who utilize diagnostic imaging.

Book PET in Oncology

    Book Details:
  • Author : Stefan Dresel
  • Publisher : Springer Science & Business Media
  • Release : 2009-04-20
  • ISBN : 354031203X
  • Pages : 255 pages

Download or read book PET in Oncology written by Stefan Dresel and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: At last, here is a comprehensive compilation of the accumulated knowledge on PET and PET/CT in oncology. It covers the entire spectrum from solidly documented indications, such as staging and monitoring of lung and colorectal cancer, to the application of PET/CT in head and neck surgery, gynecology, radiation therapy, urology, pediatrics and others. The chapters are supplemented by an introduction into the underlying techniques of both imaging devices and radiopharmacy.