EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Image Based Metrology for Nanoscale Self assembly Processes

Download or read book Image Based Metrology for Nanoscale Self assembly Processes written by Prabu Ravindran and published by . This book was released on 2007 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Self Assembly

    Book Details:
  • Author : Federico Ferrarese Lupi
  • Publisher : Mdpi AG
  • Release : 2021-11-25
  • ISBN : 9783036519616
  • Pages : 138 pages

Download or read book Nanoscale Self Assembly written by Federico Ferrarese Lupi and published by Mdpi AG. This book was released on 2021-11-25 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-assembly process underlies a plethora of natural phenomena from the macro to the nano scale. Often, technological development has found great inspiration in the natural world, as evidenced by numerous fabrication techniques based on self-assembly (SA). One striking example is given by epitaxial growths, in which atoms represent the building blocks. In lithography, the use of self-assembling materials is considered an extremely promising patterning option to overcome the size scale limitations imposed by the conventional photolithographic methods. To this purpose, in the last two decades several supramolecular self-assembling materials have been investigated and successfully applied to create patterns at a nanometric scale. Although considerable progress has been made so far in the control of self-assembly processes applied to nanolithography, a number of unresolved problems related to the reproducibility and metrology of the self-assembled features are still open. Addressing these issues is mandatory in order to allow the widespread diffusion of SA materials for applications such as microelectronics, photonics, or biology. In this context, the aim of the present Special Issue is to gather original research papers and comprehensive reviews covering various aspects of the self-assembly processes applied to nanopatterning. Topics include the development of novel SA methods, the realization of nanometric structures and devices, and the improvement of their longrange order. Moreover, metrology issues related to the nanoscale characterization of selfassembled structures are addressed.

Book Image based Metrology for Nanoscale Lamellar Structures

Download or read book Image based Metrology for Nanoscale Lamellar Structures written by Prabu Ravindran and published by . This book was released on 2010 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Optical and Correlative Microscopies for Quantitative Characterization of DNA Nanostructures

Download or read book Nanoscale Optical and Correlative Microscopies for Quantitative Characterization of DNA Nanostructures written by Christopher Michael Green and published by . This book was released on 2019 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Methods to engineer nanomaterials and devices with uniquely tailored properties are highly sought after in fields such as manufacturing, medicine, energy, and the environment. The macromolecule deoxyribonucleic acid (DNA) enables programmable self-assembly of nanostructures with near arbitrary shape and size and with unprecedented precision and accuracy. Additionally, DNA can be chemically modified to attach molecules and nanoparticles, providing a means to organize active materials into devices with unique or enhanced properties. One particularly powerful form of DNA-based self-assembly, DNA origami, provides robust structures with the potential for nanometer-scale resolution of addressable sites. DNA origami are assembled from one large DNA "scaffold" strand and many unique, short "staple" strands; each staple programmatically binds the scaffold at several distant domains, and the coordinated interactions of many staples with the scaffold act to fold the scaffold into a desired shape. The utility of DNA origami has been demonstrated through multiple applications, such as plasmonic and photonic devices, electronic device patterning, information storage, drug delivery, and biosensors. Despite the promise of DNA nanotechnology, few products have successfully translated from the laboratory to industry. Achieving high yield and high-precision synthesis of stable DNA nanostructures is one of the biggest challenges to applications of DNA nanostructures. For adoption in manufacturing, methods to measure and inspect assembled structures (i.e. metrology) are essential. Common high-resolution imaging techniques used to characterize DNA nanostructures, such as atomic force microscopy and transmission electron microscopy, cannot facilitate high-throughput characterization, and few studies have been directed towards the development of improved methods for nanoscale metrology. DNA-PAINT super-resolution microscopy enables high-resolution, multiplexed imaging of reactive sites on DNA nanostructures and offers the potential for inline optical metrology. In this work, nanoscale metrologies utilizing DNA-PAINT were developed for DNA nanostructures and applied to characterize DNA origami arrays and single site defects on DNA origami. For metrology of DNA origami arrays, an embedded, multiplexed optical super-resolution methodology was developed to characterize the periodic structure and defects of two-dimensional arrays. Images revealed the spatial arrangement of structures within the arrays, internal array defects, and grain boundaries between arrays, enabling the reconstruction of arrays from the images. The nature of the imaging technique is also highly compatible with statistical methods, enabling rapid statistical analysis of synthesis conditions. To obtain a greater understanding of DNA origami defects at the scale of individual strands, correlative super-resolution and atomic force microscopies were enabled through the development of a simple and flexibl."--Boise State University ScholarWorks.

Book Nanoscale Calibration Standards and Methods

Download or read book Nanoscale Calibration Standards and Methods written by Günter Wilkening and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantitative determination of the properties of micro- and nanostructures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. The knowledge of the geometrical dimensions of structures in most cases is the base, to which other physical and chemical properties are linked. Quantitative measurements require reliable and stable instruments, suitable measurement procedures as well as appropriate calibration artefacts and methods. The seminar "NanoScale 2004" (6th Seminar on Quantitative Microscopy and 2nd Seminar on Nanoscale Calibration Standards and Methods) at the National Metrology Institute (Physikalisch-Technische Bundesanstalt PTB), Braunschweig, Germany, continues the series of seminars on Quantitative Microscopy. The series stimulates the exchange of information between manufacturers of relevant hard- and software and the users in science and industry. Topics addressed in these proceedings are a) the application of quantitative measurements and measurement problems in: microelectronics, microsystems technology, nano/quantum/molecular electronics, chemistry, biology, medicine, environmental technology, materials science, surface processing b) calibration & correction methods: calibration methods, calibration standards, calibration procedures, traceable measurements, standardization, uncertainty of measurements c) instrumentation and methods: novel/improved instruments and methods, reproducible probe/sample positioning, position-measuring systems, novel/improved probe/detector systems, linearization methods, image processing

Book Center for Nanoscale Science and Technology 2010 Biennial Report

Download or read book Center for Nanoscale Science and Technology 2010 Biennial Report written by and published by DIANE Publishing. This book was released on with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metrology and Standardization for Nanotechnology

Download or read book Metrology and Standardization for Nanotechnology written by Elisabeth Mansfield and published by John Wiley & Sons. This book was released on 2017-01-20 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the promotion of global trading and the reduction of potential risks, the role of international standardization of nanotechnologies has become more and more important. This book gives an overview of the current status of nanotechnology including the importance of metrology and characterization at the nanoscale, international standardization of nanotechnology, and industrial innovation of nano-enabled products. First the field of nanometrology, nanomaterial standardization and nanomaterial innovation is introduced. Second, major concepts in analytical measurements are given in order to provide a basis for the reliable and reproducible characterization of nanomaterials. The role of standards organizations are presented and finally, an overview of risk management and the commercial impact of metrology and standardization for industrial innovations.

Book Guide to NIST

    Book Details:
  • Author : National Institute of Standards and Technology (U.S.)
  • Publisher :
  • Release : 1996
  • ISBN :
  • Pages : 178 pages

Download or read book Guide to NIST written by National Institute of Standards and Technology (U.S.) and published by . This book was released on 1996 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micro   Nano Replication

Download or read book Micro Nano Replication written by Shinill Kang and published by John Wiley & Sons. This book was released on 2012-04-03 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to micro and nano replication processes and applications Micro/Nano Replication: Processes and Applications provides an overview of the fundamentals, processes, and applications involved in micro and nano replication in the manufacturing of product parts. A major field of nanotechnology, the study of micro/nano replication is sure to become one of increasing importance as the construction of completely new devices based on innovative concepts and crafted at the molecular level increases. Designed to help the reader understand and learn to work with the growing number of tools for molding plastic components, the book covers the key topics related to replication, including patterning technology, the modification of mold surface properties, and much more. In addition, it addresses the strengths and weaknesses of different molding processes. With a strong focus not only on how micro/nano replication works, but also the broader implications for the industry, the book is packed with examples of real world applications. These are drawn from a variety of fields, including information storage devices, optoelectronic elements, optical communication, and biosensors, in order to provide a complete view of the importance of micro and nano processes. A valuable introduction to a new but fast-growing field, Micro/Nano Replication is an essential resource for anyone looking to get a head start on understanding this emerging discipline.

Book Data Science for Nano Image Analysis

Download or read book Data Science for Nano Image Analysis written by Chiwoo Park and published by Springer Nature. This book was released on 2021-07-31 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines two distinctive topics: data science/image analysis and materials science. The purpose of this book is to show what type of nano material problems can be better solved by which set of data science methods. The majority of material science research is thus far carried out by domain-specific experts in material engineering, chemistry/chemical engineering, and mechanical & aerospace engineering. The book could benefit materials scientists and manufacturing engineers who were not exposed to systematic data science training while in schools, or data scientists in computer science or statistics disciplines who want to work on material image problems or contribute to materials discovery and optimization. This book provides in-depth discussions of how data science and operations research methods can help and improve nano image analysis, automating the otherwise manual and time-consuming operations for material engineering and enhancing decision making for nano material exploration. A broad set of data science methods are covered, including the representations of images, shape analysis, image pattern analysis, and analysis of streaming images, change points detection, graphical methods, and real-time dynamic modeling and object tracking. The data science methods are described in the context of nano image applications, with specific material science case studies.

Book Guide to NIST  National Institute of Standards and Technology

Download or read book Guide to NIST National Institute of Standards and Technology written by DIANE Publishing Company and published by DIANE Publishing. This book was released on 1997-07 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathers in one place descriptions of NIST's many programs, products, services, and research projects, along with contact names, phone numbers, and e-mail and World Wide Web addresses for further information. It is divided into chapters covering each of NIST's major operating units. In addition, each chapter on laboratory programs includes subheadings for NIST organizational division or subject areas. Covers: electronics and electrical engineering; manufacturing engineering; chemical science and technology; physics; materials science and engineering; building and fire research and information technology.

Book Nanoscale Assembly

Download or read book Nanoscale Assembly written by Wilhelm T.S. Huck and published by Springer Science & Business Media. This book was released on 2006-07-11 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.

Book Spectral Imaging for High throughput Metrology of Large area Nanostructure Arrays

Download or read book Spectral Imaging for High throughput Metrology of Large area Nanostructure Arrays written by Brian Matthew Gawlik and published by . This book was released on 2019 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern high-throughput nanopatterning techniques such as nanoimprint lithography make it possible to fabricate arrays of nanostructures (features with dimensions on the 10’s to 100’s of nm scale) over large area substrates (in2 to m2 scale) such as Si wafers, glass sheets, and flexible roll-to-roll webs. The ability to make such large area nanostructure arrays, or “LNAs” as we will call them, gives birth to an extensive design space enabling a wide array of applications. For instance, LNAs exhibit nanophotonic properties enabling optical devices like wire-grid polarizers (WGPs), transparent conducting metal mesh grids (MMGs), color filters, perfect mirrors, and anti-reflection surfaces. LNAs can also be utilized for increasing surface area as well as generally creating large arrays of discrete features to be utilized as building blocks for electronic components in memory storage devices, sensors, and microprocessors. These unique properties make LNAs immediately attractive to certain industries such as the display and photovoltaic industries. As fabrication methods for LNAs are becoming viable, various industries are becoming interested in pursuing high-volume manufacturing of LNAs for these applications. Unfortunately, metrology methods are currently rudimentary outside of the silicon integrated circuits industry, impeding manufacturing scalability in applications such as displays and photovoltaics. Metrology is essential in the manufacturing context, because it provides invaluable feedback on the success of the fabrication process, both during new process development and large-scale production by tracking of device quality metrics, including performance and reliability metrics, and enables classification of defects that cause devices to not achieve desired quality metrics. Traditional nanometrology methods have fundamental issues which make their applicability to LNA manufacturing difficult. In particular, their low throughput is a major deal-breaker. Fortunately, the nanophotonic properties of LNAs offer a convenient basis for metrology which offers the potential to bridge the gap between the macro and nano scales. This is because the nanophotonic properties of LNAs are inherently geometry dependent, meaning that the optical effects observed from LNAs on the macroscale give direct insight into what is happening on the nanoscale. These optical properties can be characterized using spectral imaging methods such as RGB color imaging, multispectral imaging, and hyperspectral imaging. The throughput of these systems can be extremely high relative to traditional metrology approaches. For instance, a hyperspectral imaging system, when optimized, can achieve throughput of 2.6 m2/hr with 61 spectral bands (wavelength centers of 400 to 700 nm in steps of 5 nm) and a resolution of 10 x 10 μm. An RGB imaging system can achieve an even higher throughput of 15.3 m2/hr. The 10 x 10 μm lateral resolution is often adequate for display and photovoltaic applications. The high throughput makes this approach is incredibly attractive. In this dissertation, we show how spectral imaging techniques can be applied to metrology characterization tasks including defect detection and classification as well as providing a geometric measurement capability via a technique called optical critical dimension (OCD) scatterometry. In this work, we utilize exemplar manufacturing methods, namely JFIL nanoimprint lithography, to create a variety of exemplar LNAs on which we demonstrate the various metrology capabilities of spectral imaging. These LNAs include plasma etched vertical Si nanopillar arrays, metal assisted chemical etching (MACE) vertical Si nanowire arrays, WGPs, and MMGs. Each of these devices has unique manufacturing processes, and we show how the various manufacturing process steps can create a variety of different defects. Naturally, many of the defects originate in the nanoimprint process which lithographically defines the features. We show how defects like particle contamination, non-filling, residual layer thickness (RLT) variations, and adhesion failure uniquely manifest as changes in the optical signatures of the LNAs and use this principle to provide a basis for defect detection. Then, we show how image processing methods can be used to classify what types of defects have occurred over large areas such as wafer scale. Furthermore, we demonstrate that spectral imaging can be used as a geometric metrology using the OCD method, and show how hyperspectral imaging, in particular, can provide geometric measurement on wafer scale areas. The large field of view (FOV), high spatial resolution, and high speed offered by the spectral imaging approach allows for identification of a variety of interesting defect signatures that would be difficult, or nearly impossible, to observe using other metrology approaches. Finally, we discuss ongoing development of a spectral imaging system for roll-to-roll (R2R) LNA manufacturing. Construction of this system will begin in the months following this dissertation and will primarily be applied to manufacturing of WGPs and MMGs on R2R. In summary, these demonstrations are intended to serve as a demonstration of the use of spectral imaging wherever possible in LNA manufacturing. Naturally, this requires that the LNAs being manufacturing exhibit significant enough optical effects for the approach to work, but when this is the case, the advantages of the approach appear outstanding and thus have the potential to be utilized in volume manufacturing of LNAs

Book Structured Singular Light Fields

Download or read book Structured Singular Light Fields written by Eileen Otte and published by Springer Nature. This book was released on 2020-12-21 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structured singular light is an ubiquitous phenomenon. It is not only created when light refracts at a water surface but can also be found in the blue daytime sky. Such light fields include a spatially varying amplitude, phase, or polarization, enabling the occurrence of optical singularities. As structurally stable units of the light field, these singularities are particularly interesting since they determine its topology. In this excellent book, the author presents a pioneering study of structured singular light, thereby contributing many original approaches. Especially in the field of polarization and its rich number of different types of singularities the book defines and drives a completely new field. The work demonstrates how to control complex polarization singularity networks and their propagation. Additionally, the author pioneers tightly focusing vectorial beams, also developing an urgently needed detection scheme for three-dimensional nanoscale polarization structures. She also studies classical spatial entanglement using structured light, introducing entanglement beating and paraxial spin-orbit-coupling. The book is hallmarked by its comprehensive and thorough way of describing a plethora of different approaches to structure light by amplitude, phase and polarization, as well as the important role of optical singularities.

Book Journal of Nano Research

Download or read book Journal of Nano Research written by N. Ali and published by Trans Tech Publications Ltd. This book was released on 2008-01-01 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: This periodical edition includes peer-reviewed scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of the achieved results.

Book Tip Based Nanofabrication

Download or read book Tip Based Nanofabrication written by Ampere A. Tseng and published by Springer Science & Business Media. This book was released on 2011-07-25 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofabrication is critical to the realization of potential benefits in the field of electronics, bioengineering and material science. One enabling technology in nanofabrication is Tip-Based Nanofabrication, which makes use of functionalized micro-cantilevers with nanoscale tips. Tip-Based Nanofabrication: Fundamentals and Applications discusses the development of cantilevered nanotips and how they evolved from scanning probe microscopy and are able to manipulate environments at nanoscale on substrates generating different nanoscale patterns and structures. Also covered are the advantages of ultra-high resolution capability, how to use tip based nanofabrication technology as a tool in the manufacturing of nanoscale structures, single-probe tip technologies, multiple-probe tip methodology, 3-D modeling using tip based nanofabrication and the latest in imaging technology.

Book Peptide Based Materials

Download or read book Peptide Based Materials written by Timothy Deming and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-