Download or read book Identification of Parametric Models written by Eric Walter and published by . This book was released on 1997-01-14 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The presentation of a coherent methodology for the estimation of the parameters of mathematical models from experimental data is examined in this volume. Many topics are covered including the choice of the structure of the mathematical model, the choice of a performance criterion to compare models, the optimization of this performance criterion, the evaluation of the uncertainty in the estimated parameters, the design of experiments so as to get the most relevant data and the critical analysis of results. There are also several features unique to the work such as an up-to-date presentation of the methodology for testing models for identifiability and distinguishability and a comprehensive treatment of parametric optimization which includes greater consider ation of numerical aspects and which examines recursive and non-recursive methods for linear and nonlinear models.
Download or read book Nonlinear system identification 1 Nonlinear system parameter identification written by Robert Haber and published by Springer Science & Business Media. This book was released on 1999 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Process Control written by Jean-Pierre Corriou and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.
Download or read book Nonparametric System Identification written by Wlodzimierz Greblicki and published by Cambridge University Press. This book was released on 2012-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this books shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.
Download or read book Modelling and Parameter Estimation of Dynamic Systems written by J.R. Raol and published by IET. This book was released on 2004-08-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Download or read book Identification of Linear Systems written by J. Schoukens and published by Elsevier. This book was released on 2014-06-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.
Download or read book Principles of Neural Model Identification Selection and Adequacy written by Achilleas Zapranis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling. However a major weakness is the lack of established procedures for testing mis-specified models and the statistical significance of the various parameters which have been estimated. This is particularly important in the majority of financial applications where the data generating processes are dominantly stochastic and only partially deterministic. Based on the latest, most significant developments in estimation theory, model selection and the theory of mis-specified models, this volume develops neural networks into an advanced financial econometrics tool for non-parametric modelling. It provides the theoretical framework required, and displays the efficient use of neural networks for modelling complex financial phenomena. Unlike most other books in this area, this one treats neural networks as statistical devices for non-linear, non-parametric regression analysis.
Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.
Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397
Download or read book 2019 20 MATRIX Annals written by Jan de Gier and published by Springer Nature. This book was released on 2021-02-10 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.
Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2012-07-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
Download or read book Model Identification and Data Analysis written by Sergio Bittanti and published by John Wiley & Sons. This book was released on 2019-04-02 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook offers an approach that has proven successful throughout the many years during which its author has taught these topics at his University. The book: Contains accessible methods explained step-by-step in simple terms Offers an essential tool useful in a variety of fields, especially engineering, statistics, and mathematics Includes an overview on random variables and stationary processes, as well as an introduction to discrete time models and matrix analysis Incorporates historical commentaries to put into perspective the developments that have brought the discipline to its current state Provides many examples and solved problems to complement the presentation and facilitate comprehension of the techniques presented
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Mathematical and Computational Modeling and Simulation written by Dietmar Möller and published by Springer. This book was released on 2004 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces the reader to the use of mathematical and computational modeling and simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for university courses of different levels as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses.
Download or read book Parametric and Feature Based CAD CAM written by Jami J. Shah and published by John Wiley & Sons. This book was released on 1995-11-03 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is the complete introduction and applications guide to this new technology. This book introduces the reader to features and gives an overview of geometric modeling techniques, discusses the conceptual development of features as modeling entities, illustrates the use of features for a variety of engineering design applications, and develops a set of broad functional requirements and addresses high level design issues.