EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book IBM SPSS Modeler Essentials

Download or read book IBM SPSS Modeler Essentials written by Keith McCormick and published by Packt Publishing Ltd. This book was released on 2017-12-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler About This Book Get up–and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Who This Book Is For This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book. What You Will Learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions In Detail IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. Style and approach This book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.

Book IBM SPSS Modeler Essentials

Download or read book IBM SPSS Modeler Essentials written by Jose Jesus Salcedo and published by . This book was released on 2017-12-21 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler Key Features Get up-and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy-to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Book Description IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn "visual programming" style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. What you will learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions Who this book is for This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book.

Book Introduction to R in IBM SPSS Modeler

Download or read book Introduction to R in IBM SPSS Modeler written by Wannes Rosius and published by IBM Redbooks. This book was released on 2016-10-14 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM RedpaperTM publication focuses on the integration between IBM® SPSS® Modeler and R. The paper is aimed at people who know IBM SPSS Modeler and have only a very limited knowledge of R. Chapters 2, 3, and 4 provide you with a high level understanding of R integration within SPSS Modeler enabling you to create or recreate some very basic R models within SPSS Modeler, even if you have only a basic knowledge of R. Chapter 5 provides more detailed tips and tricks. This chapter is for the experienced user and consists of items that might help you get up to speed with more detailed functions of the integration and understand some pitfalls.

Book SPSS Statistics for Data Analysis and Visualization

Download or read book SPSS Statistics for Data Analysis and Visualization written by Keith McCormick and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These "hidden tools" can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.

Book Data Analysis with IBM SPSS Statistics

Download or read book Data Analysis with IBM SPSS Statistics written by Kenneth Stehlik-Barry and published by Packt Publishing Ltd. This book was released on 2017-09-22 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master data management & analysis techniques with IBM SPSS Statistics 24 About This Book Leverage the power of IBM SPSS Statistics to perform efficient statistical analysis of your data Choose the right statistical technique to analyze different types of data and build efficient models from your data with ease Overcome any hurdle that you might come across while learning the different SPSS Statistics concepts with clear instructions, tips and tricks Who This Book Is For This book is designed for analysts and researchers who need to work with data to discover meaningful patterns but do not have the time (or inclination) to become programmers. We assume a foundational understanding of statistics such as one would learn in a basic course or two on statistical techniques and methods. What You Will Learn Install and set up SPSS to create a working environment for analytics Techniques for exploring data visually and statistically, assessing data quality and addressing issues related to missing data How to import different kinds of data and work with it Organize data for analytical purposes (create new data elements, sampling, weighting, subsetting, and restructure your data) Discover basic relationships among data elements (bivariate data patterns, differences in means, correlations) Explore multivariate relationships Leverage the offerings to draw accurate insights from your research, and benefit your decision-making In Detail SPSS Statistics is a software package used for logical batched and non-batched statistical analysis. Analytical tools such as SPSS can readily provide even a novice user with an overwhelming amount of information and a broad range of options for analyzing patterns in the data. The journey starts with installing and configuring SPSS Statistics for first use and exploring the data to understand its potential (as well as its limitations). Use the right statistical analysis technique such as regression, classification and more, and analyze your data in the best possible manner. Work with graphs and charts to visualize your findings. With this information in hand, the discovery of patterns within the data can be undertaken. Finally, the high level objective of developing predictive models that can be applied to other situations will be addressed. By the end of this book, you will have a firm understanding of the various statistical analysis techniques offered by SPSS Statistics, and be able to master its use for data analysis with ease. Style and approach Provides a practical orientation to understanding a set of data and examining the key relationships among the data elements. Shows useful visualizations to enhance understanding and interpretation. Outlines a roadmap that focuses the process so decision regarding how to proceed can be made easily.

Book IBM SPSS Modeler Cookbook

Download or read book IBM SPSS Modeler Cookbook written by Keith McCormick and published by . This book was released on 2013-10-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a practical cookbook with intermediate-advanced recipes for SPSS Modeler data analysts. It is loaded with step-by-step examples explaining the process followed by the experts.If you have had some hands-on experience with IBM SPSS Modeler and now want to go deeper and take more control over your data mining process, this is the guide for you. It is ideal for practitioners who want to break into advanced analytics.

Book IBM   SmartCloud   Essentials

Download or read book IBM SmartCloud Essentials written by Edwin Schouten and published by Packt Publishing Ltd. This book was released on 2013-12-20 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

Book SPSS Statistics For Dummies

Download or read book SPSS Statistics For Dummies written by Jesus Salcedo and published by John Wiley & Sons. This book was released on 2020-09-09 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fun and friendly guide to mastering IBM’s Statistical Package for the Social Sciences Written by an author team with a combined 55 years of experience using SPSS, this updated guide takes the guesswork out of the subject and helps you get the most out of using the leader in predictive analysis. Covering the latest release and updates to SPSS 27.0, and including more than 150 pages of basic statistical theory, it helps you understand the mechanics behind the calculations, perform predictive analysis, produce informative graphs, and more. You’ll even dabble in programming as you expand SPSS functionality to suit your specific needs. Master the fundamental mechanics of SPSS Learn how to get data into and out of the program Graph and analyze your data more accurately and efficiently Program SPSS with Command Syntax Get ready to start handling data like a pro—with step-by-step instruction and expert advice!

Book Applied Predictive Analytics

Download or read book Applied Predictive Analytics written by Dean Abbott and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.

Book Real time Fraud Detection Analytics on IBM System z

Download or read book Real time Fraud Detection Analytics on IBM System z written by Mike Ebbers and published by IBM Redbooks. This book was released on 2013-04-11 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: Payment fraud can be defined as an intentional deception or misrepresentation that is designed to result in an unauthorized benefit. Fraud schemes are becoming more complex and difficult to identify. It is estimated that industries lose nearly $1 trillion USD annually because of fraud. The ideal solution is where you avoid making fraudulent payments without slowing down legitimate payments. This solution requires that you adopt a comprehensive fraud business architecture that applies predictive analytics. This IBM® Redbooks® publication begins with the business process flows of several industries, such as banking, property/casualty insurance, and tax revenue, where payment fraud is a significant problem. This book then shows how to incorporate technological advancements that help you move from a post-payment to pre-payment fraud detection architecture. Subsequent chapters describe a solution that is specific to the banking industry that can be easily extrapolated to other industries. This book describes the benefits of doing fraud detection on IBM System z®. This book is intended for financial decisionmakers, consultants, and architects, in addition to IT administrators.

Book Machine Learning for Data Mining

Download or read book Machine Learning for Data Mining written by Jesus Salcedo and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get efficient in performing data mining and machine learning using IBM SPSS Modeler Key FeaturesLearn how to apply machine learning techniques in the field of data scienceUnderstand when to use different data mining techniques, how to set up different analyses, and how to interpret the resultsA step-by-step approach to improving model development and performanceBook Description Machine learning (ML) combined with data mining can give you amazing results in your data mining work by empowering you with several ways to look at data. This book will help you improve your data mining techniques by using smart modeling techniques. This book will teach you how to implement ML algorithms and techniques in your data mining work. It will enable you to pair the best algorithms with the right tools and processes. You will learn how to identify patterns and make predictions with minimal human intervention. You will build different types of ML models, such as the neural network, the Support Vector Machines (SVMs), and the Decision tree. You will see how all of these models works and what kind of data in the dataset they are suited for. You will learn how to combine the results of different models in order to improve accuracy. Topics such as removing noise and handling errors will give you an added edge in model building and optimization. By the end of this book, you will be able to build predictive models and extract information of interest from the dataset What you will learnHone your model-building skills and create the most accurate modelsUnderstand how predictive machine learning models workPrepare your data to acquire the best possible resultsCombine models in order to suit the requirements of different types of dataAnalyze single and multiple models and understand their combined resultsDerive worthwhile insights from your data using histograms and graphsWho this book is for If you are a data scientist, data analyst, and data mining professional and are keen to achieve a 30% higher salary by adding machine learning to your skillset, then this is the ideal book for you. You will learn to apply machine learning techniques to various data mining challenges. No prior knowledge of machine learning is assumed.

Book Essential First Steps to Data Analysis

Download or read book Essential First Steps to Data Analysis written by Carol S. Parke and published by SAGE Publications. This book was released on 2012-12-13 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carol S. Parke's Essential First Steps to Data Analysis: Scenario-Based Examples Using SPSS provides instruction and guidance on preparing quantitative data sets prior to answering a study's research questions. Such preparation may involve data management and manipulation tasks, data organization, structural changes to the data files, or conducting preliminary analysis. Twelve research-based scenarios are used to present the content. Each scenario tells the "story" of a researcher who thoroughly examined their data and the decisions they made along the way. The scenario begins with a description of the researcher's study and his/her data file(s), then describes the issues the researcher must address, explains why they are important, shows how SPSS was used to address the issues and prepare data, and shares the researcher's reflections and any additional decision-making. Finally, each scenario ends with the researcher's written summary of the procedures and outcomes from the initial data preparation or analysis.

Book Systems of Insight for Digital Transformation  Using IBM Operational Decision Manager Advanced and Predictive Analytics

Download or read book Systems of Insight for Digital Transformation Using IBM Operational Decision Manager Advanced and Predictive Analytics written by Whei-Jen Chen and published by IBM Redbooks. This book was released on 2015-12-03 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.

Book SPSS For Dummies

    Book Details:
  • Author : Arthur Griffith
  • Publisher : John Wiley & Sons
  • Release : 2007-03-07
  • ISBN : 0470169508
  • Pages : 362 pages

Download or read book SPSS For Dummies written by Arthur Griffith and published by John Wiley & Sons. This book was released on 2007-03-07 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: SPSS (Statistical Package for the Social Sciences) is a data management and analysis software that allows users to generate solid, decision-making results by performing statistical analysis This book provides just the information needed: installing the software, entering data, setting up calculations, and analyzing data Covers computing cross tabulation, frequencies, descriptive ratios, means, bivariate and partial correlations, linear regression, and much more Explains how to output information into striking charts and graphs For ambitious users, also covers how to program SPSS to take their statistical analysis to the next level

Book IBM Predictive Maintenance and Quality 2 0 Technical Overview

Download or read book IBM Predictive Maintenance and Quality 2 0 Technical Overview written by Vrunda Negandhi and published by IBM Redbooks. This book was released on 2015-06-29 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® RedpaperTM publication updated technical overview provides essential details about the data processing steps, message flows, and analytical models that power IBM Predictive Maintenance and Quality (PMQ) Version 2.0. The new version of PMQ builds on the first one, released in 2013, to help companies efficiently monitor and maintain production assets and improve their overall availability, utilization, and performance. It analyzes various types of data to detect failure patterns and poor quality parts earlier than traditional quality control methods, with the goal of reducing unscheduled asset downtime and improving quality metrics. Version 2.0 includes an improved method of interacting with the solution's analytic data store using an API from the new Analytics Solution Foundation, a reusable, configurable, and extensible component that supports a number of the solution's analytic functions. The new version also changes the calculation of profiles and KPIs, which is now done using orchestrations that are defined in XML. This updated technical overview provides details about these new orchestration definitions.

Book Enabling Real time Analytics on IBM z Systems Platform

Download or read book Enabling Real time Analytics on IBM z Systems Platform written by Lydia Parziale and published by IBM Redbooks. This book was released on 2016-08-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regarding online transaction processing (OLTP) workloads, IBM® z SystemsTM platform, with IBM DB2®, data sharing, Workload Manager (WLM), geoplex, and other high-end features, is the widely acknowledged leader. Most customers now integrate business analytics with OLTP by running, for example, scoring functions from transactional context for real-time analytics or by applying machine-learning algorithms on enterprise data that is kept on the mainframe. As a result, IBM adds investment so clients can keep the complete lifecycle for data analysis, modeling, and scoring on z Systems control in a cost-efficient way, keeping the qualities of services in availability, security, reliability that z Systems solutions offer. Because of the changed architecture and tighter integration, IBM has shown, in a customer proof-of-concept, that a particular client was able to achieve an orders-of-magnitude improvement in performance, allowing that client's data scientist to investigate the data in a more interactive process. Open technologies, such as Predictive Model Markup Language (PMML) can help customers update single components instead of being forced to replace everything at once. As a result, you have the possibility to combine your preferred tool for model generation (such as SAS Enterprise Miner or IBM SPSS® Modeler) with a different technology for model scoring (such as Zementis, a company focused on PMML scoring). IBM SPSS Modeler is a leading data mining workbench that can apply various algorithms in data preparation, cleansing, statistics, visualization, machine learning, and predictive analytics. It has over 20 years of experience and continued development, and is integrated with z Systems. With IBM DB2 Analytics Accelerator 5.1 and SPSS Modeler 17.1, the possibility exists to do the complete predictive model creation including data transformation within DB2 Analytics Accelerator. So, instead of moving the data to a distributed environment, algorithms can be pushed to the data, using cost-efficient DB2 Accelerator for the required resource-intensive operations. This IBM Redbooks® publication explains the overall z Systems architecture, how the components can be installed and customized, how the new IBM DB2 Analytics Accelerator loader can help efficient data loading for z Systems data and external data, how in-database transformation, in-database modeling, and in-transactional real-time scoring can be used, and what other related technologies are available. This book is intended for technical specialists and architects, and data scientists who want to use the technology on the z Systems platform. Most of the technologies described in this book require IBM DB2 for z/OS®. For acceleration of the data investigation, data transformation, and data modeling process, DB2 Analytics Accelerator is required. Most value can be achieved if most of the data already resides on z Systems platforms, although adding external data (like from social sources) poses no problem at all.

Book Introduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos

Download or read book Introduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos written by Niels Blunch and published by SAGE. This book was released on 2012-11-09 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive Second Edition offers readers a complete guide to carrying out research projects involving structural equation modeling (SEM). Updated to include extensive analysis of AMOS′ graphical interface, a new chapter on latent curve models and detailed explanations of the structural equation modeling process, this second edition is the ideal guide for those new to the field. The book includes: Learning objectives, key concepts and questions for further discussion in each chapter. Helpful diagrams and screenshots to expand on concepts covered in the texts. Real life examples from a variety of disciplines to show how SEM is applied in real research contexts. Exercises for each chapter on an accompanying companion website. A new glossary. Assuming no previous experience of the subject, and a minimum of mathematical knowledge, this is the ideal guide for those new to SEM and an invaluable companion for students taking introductory SEM courses in any discipline. Niels J. Blunch was formerly in the Department of Marketing and Statistics at the University of Aarhus, Denmark