Download or read book How Fuzzy Concepts Contribute to Machine Learning written by Mahdi Eftekhari and published by Springer Nature. This book was released on 2022-02-15 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the communities of pure mathematicians of fuzzy sets and data scientists.
Download or read book Dynamic Fuzzy Machine Learning written by Fanzhang Li and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-04 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.
Download or read book Evolving Fuzzy Systems Methodologies Advanced Concepts and Applications written by Edwin Lughofer and published by Springer. This book was released on 2011-01-31 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s real-world applications, there is an increasing demand of integrating new information and knowledge on-demand into model building processes to account for changing system dynamics, new operating conditions, varying human behaviors or environmental influences. Evolving fuzzy systems (EFS) are a powerful tool to cope with this requirement, as they are able to automatically adapt parameters, expand their structure and extend their memory on-the-fly, allowing on-line/real-time modeling. This book comprises several evolving fuzzy systems approaches which have emerged during the last decade and highlights the most important incremental learning methods used. The second part is dedicated to advanced concepts for increasing performance, robustness, process-safety and reliability, for enhancing user-friendliness and enlarging the field of applicability of EFS and for improving the interpretability and understandability of the evolved models. The third part underlines the usefulness and necessity of evolving fuzzy systems in several online real-world application scenarios, provides an outline of potential future applications and raises open problems and new challenges for the next generation evolving systems, including human-inspired evolving machines. The book includes basic principles, concepts, algorithms and theoretic results underlined by illustrations. It is dedicated to researchers from the field of fuzzy systems, machine learning, data mining and system identification as well as engineers and technicians who apply data-driven modeling techniques in real-world systems.
Download or read book Fuzzy Logic in Artificial Intelligence written by Erich P. Klement and published by Springer. This book was released on 2014-03-12 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Eighth Austrian Artificial Intelligence Conference, held in Linz, Austria, in June 1993. The focus of the conference was on "Fuzzy Logic in Artificial Intelligence". The volume contains abstracts of two invited talks and full versions of 17 carefully selected papers. The invited talks were: "The role of fuzzylogic and soft computing in the conception and design of intelligent systems" by Lotfi A. Zadeh, and "A contextual approach for AI systems development" by Irina V. Ezhkova. The contributed papers are grouped into sections on theoretical issues, machine learning, expert systems, robotics and control, applications to medicine, and applications to car driving. Additionally, the volume contains descriptions of the four workshops that took place during the conference.
Download or read book Learning and Soft Computing written by Vojislav Kecman and published by MIT Press. This book was released on 2001 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.
Download or read book Era of Artificial Intelligence written by Rik Das and published by CRC Press. This book was released on 2023-07-10 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text has attempted to collate quality research articles ranging from A Mathematical Disposition for Neural Nets, to Cognitive Computing, to Quantum Machine Learning, to a Multimodal Emotion Recognition System, to Responsible AI, to AI for Accessibility and Inclusion, to Artificial-Enabled Intelligence Enabled Applications in the sectors of Health, Pharma and Education. Features Focus on AI research and interdisciplinary research that exhibits AI inclusion to a greater degree Focus on application of disruptive technology in the context of the twenty-first century human and machine approach Focus on role of disruptive technology such as cognitive computing, quantum machine learning, IOT enabled-recognition systems Focus on unravelling the powerful features of artificial intelligence for societal benefits including accessibility This volume will cater as a ready reference to an individual’s quest for deep diving into the ocean of artificial intelligence-enabled solution approaches. The book will serve as a useful reference for researchers, innovators, academicians, entrepreneurs, and professionals aspiring to gain expertise in the domain of cognitive and quantum computing, IOT-enabled intelligent systems and so on.
Download or read book Encyclopedia of Data Science and Machine Learning written by Wang, John and published by IGI Global. This book was released on 2023-01-20 with total page 3296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Download or read book Introduction to Machine Learning and Bioinformatics written by Sushmita Mitra and published by CRC Press. This book was released on 2008-06-05 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today’s biological experiments.
Download or read book Knowledge is Power in Four Dimensions Models to Forecast Future Paradigm written by Bahman Zohuri and published by Academic Press. This book was released on 2022-07-14 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigms, Forecasting Energy for Tomorrow's World with Mathematical Modeling and Python Programming Driven Artificial Intelligence delivers knowledge on key infrastructure topics in both AI technology and energy. Sections lay the groundwork for tomorrow's computing functionality, starting with how to build a Business Resilience System (BRS), data warehousing, data management, and fuzzy logic. Subsequent chapters dive into the impact of energy on economic development and the environment and mathematical modeling, including energy forecasting and engineering statistics. Energy examples are included for application and learning opportunities. A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera. - Helps users gain fundamental knowledge in technology infrastructure, including AI, machine learning and fuzzy logic - Compartmentalizes data knowledge into near-term and long-term forecasting models, with examples involving both renewable and non-renewable energy outcomes - Advances climate resiliency and helps readers build a business resiliency system for assets
Download or read book Advanced Machine Learning written by Dr. Amit Kumar Tyagi and published by BPB Publications. This book was released on 2024-06-29 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field. Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms. After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms. KEY FEATURES ● Basic understanding of machine learning algorithms via MATLAB, R, and Python. ● Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies. ● Adding futuristic technologies related to machine learning and deep learning. WHAT YOU WILL LEARN ● Ability to tackle complex machine learning problems. ● Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data. ● Efficient data analysis for real-time data will be understood by researchers/ students. ● Using data analysis in near future topics and cutting-edge technologies. WHO THIS BOOK IS FOR This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Statistical Analysis 3. Linear Regression 4. Logistic Regression 5. Decision Trees 6. Random Forest 7. Rule-Based Classifiers 8. Naïve Bayesian Classifier 9. K-Nearest Neighbors Classifiers 10. Support Vector Machine 11. K-Means Clustering 12. Dimensionality Reduction 13. Association Rules Mining and FP Growth 14. Reinforcement Learning 15. Applications of ML Algorithms 16. Applications of Deep Learning 17. Advance Topics and Future Directions
Download or read book Computational Intelligent Techniques in Mechatronics written by Kolla Bhanu Prakash and published by John Wiley & Sons. This book was released on 2024-10-22 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, set against the backdrop of huge advancements in artificial intelligence and machine learning within mechatronic systems, serves as a comprehensive guide to navigating the intricacies of mechatronics and harnessing its transformative potential. Mechatronics has been a revolutionary force in engineering and medical robotics over the past decade. It will lead to a major industrial revolution and affect research in every field of engineering. This book covers the basics of mechatronics, computational intelligence approaches, simulation and modeling concepts, architectures, nanotechnology, real-time monitoring and control, different actuators, and sensors. The book explains clearly and comprehensively the engineering design process at different stages. As the historical divisions between the various branches of engineering and computer science become less clearly defined, mechatronics may provide a roadmap for nontraditional engineering students studying within the traditional university structure. This book covers all the algorithms and techniques found in mechatronics engineering, well explained with real-time examples, especially lab experiments that will be very informative to students and scholars. Audience This resource is important for R & D departments in academia, government, and industry. It will appeal to mechanical engineers, electronics engineers, computer scientists, robotics engineers, professionals in manufacturing, automation and related industries, as well as innovators and entrepreneurs.
Download or read book AI 2020 Advances in Artificial Intelligence written by Marcus Gallagher and published by Springer Nature. This book was released on 2020-11-27 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 33rd Australasian Joint Conference on Artificial Intelligence, AI 2020, held in Canberra, ACT, Australia, in November 2020.* The 36 full papers presented in this volume were carefully reviewed and selected from 57 submissions. The paper were organized in topical sections named: applications; evolutionary computation; fairness and ethics; games and swarms; and machine learning. *The conference was held virtually due to the COVID-19 pandemic.
Download or read book Enterprise Information Systems written by Joaquim Filipe and published by Springer Science & Business Media. This book was released on 2009-05-04 with total page 1002 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the collection of full papers accepted at the 11th International Conference on Enterprise Information Systems (ICEIS 2009), organized by the Ins- tute for Systems and Technologies of Information Control and Communication (INSTICC) in cooperation with the Association for Advancement of Artificial Intel- gence (AAAI) and ACM SIGMIS (SIG on Management Information Systems), and technically co-sponsored by the Japanese IEICE SWIM (SIG on Software Interprise Modeling) and the Workflow Management Coalition (WfMC). ICEIS 2009 was held in Milan, Italy. This conference has grown to become a - jor point of contact between research scientists, engineers and practitioners in the area of business applications of information systems. This year, five simultaneous tracks were held, covering different aspects related to enterprise computing, including: “- tabases and Information Systems Integration,” “Artificial Intelligence and Decision Support Systems,” “Information Systems Analysis and Specification,” “Software Agents and Internet Computing” and “Human–Computer Interaction”. All tracks describe research work that is often oriented toward real-world applications and hi- light the benefits of information systems and technology for industry and services, thus making a bridge between academia and enterprise. ICEIS 2009 received 644 paper submissions from 70 countries in all continents; 81 papers were published and presented as full papers, i.e., completed research work (8 pages/30-minute oral presentation). Additional papers accepted at ICEIS, including short papers and posters, were published in the regular conference proceedings.
Download or read book Machine Learning Foundations written by Taeho Jo and published by Springer Nature. This book was released on 2021-02-12 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.
Download or read book Deep Learning and Neural Networks Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2019-10-11 with total page 1707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Download or read book Empirical Approach to Machine Learning written by Plamen P. Angelov and published by Springer. This book was released on 2018-10-17 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. It can also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code. Dimitar Filev, Henry Ford Technical Fellow, Ford Motor Company, USA, and Member of the National Academy of Engineering, USA: “The book Empirical Approach to Machine Learning opens new horizons to automated and efficient data processing.” Paul J. Werbos, Inventor of the back-propagation method, USA: “I owe great thanks to Professor Plamen Angelov for making this important material available to the community just as I see great practical needs for it, in the new area of making real sense of high-speed data from the brain.” Chin-Teng Lin, Distinguished Professor at University of Technology Sydney, Australia: “This new book will set up a milestone for the modern intelligent systems.” Edward Tunstel, President of IEEE Systems, Man, Cybernetics Society, USA: “Empirical Approach to Machine Learning provides an insightful and visionary boost of progress in the evolution of computational learning capabilities yielding interpretable and transparent implementations.”
Download or read book Advances in Computational Intelligence Systems written by George Panoutsos and published by Springer Nature. This book was released on with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: