EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physics of Hot Electron Transport in Semiconductors

Download or read book Physics of Hot Electron Transport in Semiconductors written by Chin Sen Ting and published by World Scientific. This book was released on 1992 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Book Digital Integrated Circuits

Download or read book Digital Integrated Circuits written by Jan M. Rabaey and published by . This book was released on 1996 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with discussions on the operation of electronic devices and analysis of the nucleus of digital design, the text addresses: the impact of interconnect, design for low power, issues in timing and clocking, design methodologies, and the effect of design automation on the digital design perspective.

Book Hot Electrons in Semiconductors

Download or read book Hot Electrons in Semiconductors written by N. Balkan and published by . This book was released on 1998 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.

Book Hot Electron Transport in Semiconductors

Download or read book Hot Electron Transport in Semiconductors written by L. Reggiani and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hot-Electron Transport in Semiconductors (Topics in Applied Physics).

Book Cadmium Telluride Quantum Dots

Download or read book Cadmium Telluride Quantum Dots written by John Donegan and published by CRC Press. This book was released on 2013-12-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, semiconductor quantum dots—small colloidal nanoparticles—have garnered a great deal of scientific interest because of their unique properties. Among nanomaterials, CdTe holds special technological importance as the only known II–VI material that can form conventional p–n junctions. This makes CdTe very important for the development of novel optoelectronic devices such as light-emitting diodes, solar cells, and lasers. Moreover, the demand for water-compatible light emitters and the most common biological buffers give CdTe quantum dots fields a veritable edge in biolabeling and bioimaging. Cadmium Telluride Quantum Dots: Advances and Applications focuses on CdTe quantum dots and addresses their synthesis, assembly, optical properties, and applications in biology and medicine. It makes for a very informative reading for anyone involved in nanotechnology and will also benefit those scientists who are looking for a comprehensive account on the current state of quantum dot–related research.

Book Hot Carrier Effects in MOS Devices

Download or read book Hot Carrier Effects in MOS Devices written by Eiji Takeda and published by Elsevier. This book was released on 1995-11-28 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world. This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work encompasses not only all the latest research and discoveries made in the fast-paced area of hot carriers, but also includes the basics of MOS devices, and the practical considerations related to hot carriers. - Chapter one itself is a comprehensive review of MOS device physics which allows a reader with little background in MOS devices to pick up a sufficient amount of information to be able to follow the rest of the book - The book is written to allow the reader to learn about MOS Device Reliability in a relatively short amount of time, making the texts detailed treatment of hot-carrier effects especially useful and instructive to both researchers and others with varyingamounts of experience in the field - The logical organization of the book begins by discussing known principles, then progresses to empirical information and, finally, to practical solutions - Provides the most complete review of device degradation mechanisms as well as drain engineering methods - Contains the most extensive reference list on the subject

Book Hot Carrier Degradation in Semiconductor Devices

Download or read book Hot Carrier Degradation in Semiconductor Devices written by Tibor Grasser and published by Springer. This book was released on 2014-10-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Book Nanostructured Materials for Solar Energy Conversion

Download or read book Nanostructured Materials for Solar Energy Conversion written by Tetsuo Soga and published by Elsevier. This book was released on 2006-12-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area.* Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials

Book Noble Metal Metal Oxide Hybrid Nanoparticles

Download or read book Noble Metal Metal Oxide Hybrid Nanoparticles written by Satyabrata Mohapatra and published by Elsevier. This book was released on 2018-10-11 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. - Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable - Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications - Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare

Book Advanced Theory of Semiconductor Devices

Download or read book Advanced Theory of Semiconductor Devices written by Karl Hess and published by Wiley-IEEE Press. This book was released on 2000 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering Advanced Theory of Semiconductor Devices Semiconductor devices are ubiquitous in today’s world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-of-the-art knowledge of devices used in both III–V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p—n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices.

Book Plasmonic Catalysis

Download or read book Plasmonic Catalysis written by Pedro H.C. Camargo and published by John Wiley & Sons. This book was released on 2021-06-21 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore this comprehensive discussion of the foundational and advanced topics in plasmonic catalysis from two leaders in the field Plasmonic Catalysis: From Fundamentals to Applications delivers a thorough treatment of plasmonic catalysis, from its theoretical foundations to myriad applications in industry and academia. In addition to the fundamentals, the book covers the theory, properties, synthesis, and various reaction types of plasmonic catalysis. It also covers its applications in reactions including oxidation, reduction, nitrogen fixation, CO2 reduction, and more. The book characterizes plasmonic catalytic systems and describes their properties, tackling the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. It also describes the fundamentals of controlled synthesis of metal nanoparticles relevant to plasmonic catalysis, as well as practical examples thereof. Plasmonic Catalysis covers a wide variety of other practical topics in the field, including hydrogenation reactions and the harvesting of LSPR-excited charge carriers. Readers will also benefit from the inclusion of: A thorough introduction to plasmonic catalysis, a theory of plasmons for catalysis and mechanisms, as well as optical properties of plasmonic-catalytic nanostructures An exploration of the synthesis of plasmonic nanoparticles for photo and electro catalysis, as well as plasmonic catalysis towards oxidation reactions and hydrogenation reactions Discussions of plasmonic catalysis for multi-electron processes and artificial photosynthesis and N2 fixation An examination of control over reaction selectivity in plasmonic catalysis Perfect for catalytic chemists, materials scientists, photochemists, and physical chemists, Plasmonic Catalysis: From Fundamentals to Applications will also earn a place in the libraries of physicists who seek a one-stop resource to enhance their understanding of applications in plasmonic catalysis.

Book Germanium Based Technologies

Download or read book Germanium Based Technologies written by Cor Claeys and published by Elsevier. This book was released on 2011-07-28 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium-Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge-technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book. - State-of-the-art information available for the first time as an all-in-source - Extensive reference list making it an indispensable reference book - Broad coverage from fundamental aspects up to industrial applications

Book Optical Effects in Solids

    Book Details:
  • Author : David B. Tanner
  • Publisher : Cambridge University Press
  • Release : 2019-05-02
  • ISBN : 1107160146
  • Pages : 413 pages

Download or read book Optical Effects in Solids written by David B. Tanner and published by Cambridge University Press. This book was released on 2019-05-02 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.

Book Physics of Quantum Electron Devices

Download or read book Physics of Quantum Electron Devices written by Federico Capasso and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.

Book Theory Of Quantum Liquids

Download or read book Theory Of Quantum Liquids written by David Pines and published by CRC Press. This book was released on 2018-03-09 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with a single group of quantum liquids, normal Fermi liqztids, discussing the nature of elementary excitations, the central concept of response functions. It is intended as a text for a graduate course in quantum statistical mechanics or low temperature theory.

Book Reliability and Failure of Electronic Materials and Devices

Download or read book Reliability and Failure of Electronic Materials and Devices written by Milton Ohring and published by Academic Press. This book was released on 2014-10-14 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Book Hot Carriers in Semiconductors

Download or read book Hot Carriers in Semiconductors written by FERRY and published by IOP Publishing Limited. This book was released on 2021-12-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research and reference text provides up-to-date coverage of the latest research on hot carriers in semiconductors, with a focus on the background, theoretical approaches, measurements and physical understanding required to engage with the field. Pitched at an introductory level, it equips researchers transitioning from optics to fully understand the role of hot carriers in semiconductors, and is a core text for graduate courses in hot carrier phenomena.