Download or read book Higher Order Growth Curves and Mixture Modeling with Mplus written by Kandauda A.S. Wickrama and published by Routledge. This book was released on 2016-04-14 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.
Download or read book Higher Order Growth Curves and Mixture Modeling with Mplus written by K. A. S. Wickrama and published by . This book was released on 2021-11 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two using normal and non-normal (e.g., categorical) data. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book's datasets are available on the web. New to this edition: * Two new chapters providing a stepwise introduction and practical guide to the application of second-order growth curves and mixture models with categorical outcomes using the Mplus program. Complete with exercises, answer keys, and downloadable data files. * Updated illustrative examples using Mplus 8.0 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. This text is ideal for use in graduate courses or workshops on advanced structural equation, multilevel, longitudinal or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) across the social and behavioral sciences.
Download or read book Higher Order Growth Curves and Mixture Modeling with Mplus written by Kandauda A.S. Wickrama and published by Routledge. This book was released on 2021-11-24 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two using normal and non-normal (e.g., categorical) data. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. New to this edition: * Two new chapters providing a stepwise introduction and practical guide to the application of second-order growth curves and mixture models with categorical outcomes using the Mplus program. Complete with exercises, answer keys, and downloadable data files. * Updated illustrative examples using Mplus 8.0 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. This text is ideal for use in graduate courses or workshops on advanced structural equation, multilevel, longitudinal or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) across the social and behavioral sciences.
Download or read book Higher Order Growth Curves and Mixture Modeling with Mplus written by Kandauda A.S. Wickrama and published by Routledge. This book was released on 2016-04-14 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.
Download or read book Mplus Version 8 User s Guide written by Linda K. Muthen and published by . This book was released on 2017-04-10 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Latent Variable Mixture Models written by Gregory R. Hancock and published by IAP. This book was released on 2007-11-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.
Download or read book Growth Modeling written by Kevin J. Grimm and published by Guilford Publications. This book was released on 2016-10-17 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Download or read book Latent Curve Models written by Kenneth A. Bollen and published by John Wiley & Sons. This book was released on 2005-12-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.
Download or read book Latent Growth Curve Modeling written by Kristopher J. Preacher and published by SAGE Publications. This book was released on 2008-06-27 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Latent growth curve modeling (LGM)—a special case of confirmatory factor analysis designed to model change over time—is an indispensable and increasingly ubiquitous approach for modeling longitudinal data. This volume introduces LGM techniques to researchers, provides easy-to-follow, didactic examples of several common growth modeling approaches, and highlights recent advancements regarding the treatment of missing data, parameter estimation, and model fit. The book covers the basic linear LGM, and builds from there to describe more complex functional forms (e.g., polynomial latent curves), multivariate latent growth curves used to model simultaneous change in multiple variables, the inclusion of time-varying covariates, predictors of aspects of change, cohort-sequential designs, and multiple-group models. The authors also highlight approaches to dealing with missing data, different estimation methods, and incorporate discussion of model evaluation and comparison within the context of LGM. The models demonstrate how they may be applied to longitudinal data derived from the NICHD Study of Early Child Care and Youth Development (SECCYD).. Key Features · Provides easy-to-follow, didactic examples of several common growth modeling approaches · Highlights recent advancements regarding the treatment of missing data, parameter estimation, and model fit · Explains the commonalities and differences between latent growth model and multilevel modeling of repeated measures data · Covers the basic linear latent growth model, and builds from there to describe more complex functional forms such as polynomial latent curves, multivariate latent growth curves, time-varying covariates, predictors of aspects of change, cohort-sequential designs, and multiple-group models
Download or read book Multilevel Modeling written by Steven P. Reise and published by Psychology Press. This book was released on 2003-01-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book appeals to researchers who work with nested data structures or repeated measures data, including biomed & health researchers, clinical/intervention researchers and developmental & educational psychologists. Also some potential as a grad lvl tex
Download or read book New Methods for the Analysis of Change written by Linda M. Collins and published by Amer Psychological Assn. This book was released on 2001-01-01 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Psychologists update the Association's 1991 with 12 studies, many from a conference held at Pennsylvania State University in 1998, and some with comments attached. The topics include differential structural equation modeling of intra-individual variability, combining auto-regressive and latent curve models, and planned missing-data designs for analyzing change. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Download or read book A Life Course Perspective on Health Trajectories and Transitions written by Claudine Burton-Jeangros and published by Springer. This book was released on 2015-08-11 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book examines health trajectories and health transitions at different stages of the life course, including childhood, adulthood and later life. It provides findings that assess the role of biological and social transitions on health status over time. The essays examine a wide range of health issues, including the consequences of military service on body mass index, childhood obesity and cardiovascular health, socio-economic inequalities in preventive health care use, depression and anxiety during the child rearing period, health trajectories and transitions in people with cystic fibrosis and oral health over the life course. The book addresses theoretical, empirical and methodological issues as well as examines different national contexts, which help to identify factors of vulnerability and potential resources that support resilience available for specific groups and/or populations. Health reflects the ability of individuals to adapt to their social environment. This book analyzes health as a dynamic experience. It examines how different aspects of individual health unfold over time as a result of aging but also in relation to changing socioeconomic conditions. It also offers readers potential insights into public policies that affect the health status of a population.
Download or read book The Essence of Multivariate Thinking written by Lisa L. Harlow and published by Taylor & Francis. This book was released on 2023-07-18 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the underlying themes that run through most multivariate methods, in this fully updated 3rd edition of The Essence of Multivariate Thinking Dr. Harlow shares the similarities and differences among multiple multivariate methods to help ease the understanding of the basic concepts. The book continues to highlight the main themes that run through just about every quantitative method, describing the statistical features in clear language. Analyzed examples are presented in 12 of the 15 chapters, showing when and how to use relevant multivariate methods, and how to interpret the findings both from an overarching macro- and more specific micro-level approach that includes focus on statistical tests, effect sizes and confidence intervals. This revised 3rd edition offers thoroughly revised and updated chapters to bring them in line with current information in the field, the addition of R code for all examples, continued SAS and SPSS code for seven chapters, two new chapters on structural equation modeling (SEM) on multiple sample analysis (MSA) and latent growth modeling (LGM), and applications with a large longitudinal dataset in the examples of all methods chapters. Of interest to those seeking clarity on multivariate methods often covered in a statistics course for first-year graduate students or advanced undergraduates, this book will be key reading and provide greater conceptual understanding and clear input on how to apply basic and SEM multivariate statistics taught in psychology, education, human development, business, nursing, and other social and life sciences.
Download or read book The SAGE Encyclopedia of Research Design written by Bruce B. Frey and published by SAGE Publications. This book was released on 2022-01-27 with total page 3889 pages. Available in PDF, EPUB and Kindle. Book excerpt: The SAGE Encyclopedia of Research Design maps out how one makes decisions about research design, interprets data, and draws valid inferences, undertakes research projects in an ethical manner, and evaluates experimental design strategies and results. From A-to-Z, this four-volume work covers the spectrum of research design strategies and topics including, among other things: fundamental research design principles, ethics in the research process, quantitative versus qualitative and mixed-method designs, completely randomized designs, multiple comparison tests, diagnosing agreement between data and models, fundamental assumptions in analysis of variance, factorial treatment designs, complete and incomplete block designs, Latin square and related designs, hierarchical designs, response surface designs, split-plot designs, repeated measures designs, crossover designs, analysis of covariance, statistical software packages, and much more. Research design, with its statistical underpinnings, can be especially daunting for students and novice researchers. At its heart, research design might be described simply as a formalized approach toward problem solving, thinking, and acquiring knowledge, the success of which depends upon clearly defined objectives and appropriate choice of statistical design and analysis to meet those objectives. The SAGE Encyclopedia of Research Design will assist students and researchers with their work while providing vital information on research strategies.
Download or read book Longitudinal Structural Equation Modeling written by Todd D. Little and published by Guilford Publications. This book was released on 2023-12-27 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beloved for its engaging, conversational style, this valuable book is now in a fully updated second edition that presents the latest developments in longitudinal structural equation modeling (SEM) and new chapters on missing data, the random intercepts cross-lagged panel model (RI-CLPM), longitudinal mixture modeling, and Bayesian SEM. Emphasizing a decision-making approach, leading methodologist Todd D. Little describes the steps of modeling a longitudinal change process. He explains the big picture and technical how-tos of using longitudinal confirmatory factor analysis, longitudinal panel models, and hybrid models for analyzing within-person change. User-friendly features include equation boxes that translate all the elements in every equation, tips on what does and doesn't work, end-of-chapter glossaries, and annotated suggestions for further reading. The companion website provides data sets for the examples--including studies of bullying and victimization, adolescents' emotions, and healthy aging--along with syntax and output, chapter quizzes, and the book’s figures. New to This Edition: *Chapter on missing data, with a spotlight on planned missing data designs and the R-based package PcAux. *Chapter on longitudinal mixture modeling, with Whitney Moore. *Chapter on the random intercept cross-lagged panel model (RI-CLPM), with Danny Osborne. *Chapter on Bayesian SEM, with Mauricio Garnier. *Revised throughout with new developments and discussions, such as how to test models of experimental effects.
Download or read book Bayesian Structural Equation Modeling written by Sarah Depaoli and published by Guilford Publications. This book was released on 2021-08-16 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.
Download or read book Handbook of Quantitative Criminology written by Alex R. Piquero and published by Springer Science & Business Media. This book was released on 2009-12-16 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative criminology has certainly come a long way since I was ?rst introduced to a largely qualitative criminology some 40 years ago, when I was recruited to lead a task force on science and technology for the President’s Commission on Law Enforcement and Administration of Justice. At that time, criminology was a very limited activity, depending almost exclusively on the Uniform Crime Reports (UCR) initiated by the FBI in 1929 for measurement of crime based on victim reports to the police and on police arrests. A ty- cal mode of analysis was simple bivariate correlation. Marvin Wolfgang and colleagues were makingan importantadvancebytrackinglongitudinaldata onarrestsin Philadelphia,an in- vation that was widely appreciated. And the ?eld was very small: I remember attending my ?rst meeting of the American Society of Criminology in about 1968 in an anteroom at New York University; there were about 25–30 people in attendance, mostly sociologists with a few lawyers thrown in. That Society today has over 3,000 members, mostly now drawn from criminology which has established its own clear identity, but augmented by a wide variety of disciplines that include statisticians, economists, demographers, and even a few engineers. This Handbook provides a remarkable testimony to the growth of that ?eld. Following the maxim that “if you can’t measure it, you can’t understand it,” we have seen the early dissatisfaction with the UCR replaced by a wide variety of new approaches to measuring crime victimization and offending.