EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Performance Perovskite Hybrid Solar Cell Via Interfacial Engineering

Download or read book High Performance Perovskite Hybrid Solar Cell Via Interfacial Engineering written by Yifan Li and published by . This book was released on 2016 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite (CH3NH3PbI3 based materials) hybrid solar cell has been one of the most promising photovoltaic device due its plenty of advantages such as low price of raw materials, easy fabricating procedure and relative high power converted efficiency (PCE) (compared to polymer solar cells) and so on. However, the still not very high efficiency of perovskite hybrid solar cells makes it at a disadvantage position in the competition with traditional silicon solar cells. Thus, to make it more competitive, efficiency enhancement comes to a vital issued need to be addressed. There are three chapters in this thesis. In chapter 1, a general introduction of perovskite hybrid solar cells including working mechanism and development is giving. In chapter 2, we use the electrochemical material PSBEDOT to function as the hole transfer layer to observe the high performance of perovskite devices. In chapter 3, to improve the efficiency of perovskite hybrid solar cells, we have blended commercial available Fe3O4 nanoparticles in to the active layer of perovskite hybrid solar cells to see any performance improvement. To further enhance the device performance, some magnetic treatments have been done in the perovskite layer of the device including the involving of magnetic nanoparticles and external magnetic field. Finally, we have got a result with PCE reaching 14.40% with a dramatically enhanced short current density.

Book Towards High performance Perovskite Solar Cells by Cathode Interfacial Engineering with Ternary Metal Oxide and Device Engineering with Bulk Hetrojunction

Download or read book Towards High performance Perovskite Solar Cells by Cathode Interfacial Engineering with Ternary Metal Oxide and Device Engineering with Bulk Hetrojunction written by Zixin Wang and published by . This book was released on 2017 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite hybrid solar cells (Pero-HSCs) are rising stars in the nowadays photovoltaic(PV) technology. Within couple of years, the efficiency of perovskite solar cells has evolutionarily reach 22%, which override other types of solar cell by its low cost and ease to assemble. In theory, the Pero-HSCs has an upper conversion efficiency as 31%, therefore there are huge potential to be fulfilled in the near future research. In this work, we mainly focused on strengthening the electron extraction and transportation in the lead methylammonium tri-iodide(MAPbI3) perovskite solar cells. After a brief introduction on the origins and working principles of perovskite solar cells (Chapter ¿), the optimization of the cathode interface layer is addressed (Chapter ¿). Followed, a bulk heterojunction perovskite device was assembled by asserting n-type nanoparticles into perovskite layer for the first time (Chapter ¿). Last, the significance of this work and outlook was analyzed in Chapter ¿.Interfacial engineering of conventional perovskite solar cell is investigated by adopting a ternary metal oxide, Zn2SnO4 (ZSO), as electron extraction layer(EEL). Compared with generally used ZnO (ZO), thin film of ZSO nanoparticles(NPs) possess higher transparency over the entire visible wavelength, and is low temperature (=100 oC) annealed. Combined with more favorable energy level for electron extraction as cathode interface layer and higher electron conductivity, a dramatically boost in short circuit current density (JSC) and accordingly higher power conversion efficiency(PCE) were observed. Device engineering of inverted structured perovskite solar cells by incorporating either ZO NPs or ZSO NPs into the perovskite layer to form bulk heterojunction is discussed. Owning to the improved carrier mobility and much more balanced e-h transport, charge recombination was largely suppressed, the enlarged VOC, JSC and fill factor(FF) was obtained, corresponding to a 25% augment in PCE compared with planar perovskite device.

Book High Performance Thin Film Solar Cells Via Nanoscale Interface

Download or read book High Performance Thin Film Solar Cells Via Nanoscale Interface written by Yao-Tsung Hsieh and published by . This book was released on 2018 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been 64 years since Bell Laboratories built the first silicon solar cell in 1954. The harnessing of the almost unlimited energy from the sun for human civilization seems not an untouchable dream anymore. However, the rapid growth of the global population companied with the growing demand to enable a decent life quality causes the energy issue more challenging than ever. Nowadays silicon solar cells continue to take a leading position, not only offering potential solutions for energy demands but also stimulating the development of various photovoltaic technologies. Among them, solution processible thin film solar cells attract most attentions due to multiple advantages over traditional silicon solar cells. In this dissertation, I focus on two most promising types of them: 1) kesterite solar cells and 2) hybrid organic-inorganic perovskite solar cells. Particularly I work on the grain growth mechanism and processing techniques via nanoscale interface engineering to improve materials thin film properties and device architecture design. In Chapter 3, Cu2ZnSn(S,Se)4 was used as a model system to demonstrate the kinetic control of solid-gas reactions at nanoscale by manipulating the surface chemistry of both sol-gel nanoparticles and colloidal nanocrystals. It was identified that thiourea (commonly used as sulfur sources for metal sulfides) can transform to melamine during the film formation, and melamine would serve as surface ligands for as-formed Cu2ZnSn(S,Se)4 nanoparticles. These surface ligands can affect the solid-gas reactions during the selenization, which enable us to control film morphologies and device performance by simply adjusting the amount of surface ligands. To further enhance Cu2ZnSn(S,Se)4 device performance, a systematic investigation on alkali metal doping effect was conducted. In Chapter 4, alkali metal-containing precursors were used to study influences on Cu2ZnSn(S,Se)4 film morphology, crystallinity and electronic properties. K-doped Cu2ZnSn(S,Se)4 solar cells showed the best device performance. Due to the surface electronic inversion effect, various thickness of CdS buffer layers were tested on K-passivated Cu2ZnSn(S,Se)4 surface for further improving device efficiency. Over 8% power conversion efficiency of K-doped Cu2ZnSn(S,Se)4 solar cell with 35 nm CdS has been reached. Finally, in Chapter 5, the hybrid organic-inorganic perovskite solar cells are introduced. We demonstrated a novel tandem device employing nanoscale interface engineering of Cu(In,Ga)Se2 surface alongside a heavy-doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] hole transporting layer between the two subcells that preserves open-circuit voltage, and enhanced both fill factor and short-circuit current. As a result, we have successfully doubled the previous efficiency record for a monolithic perovskite/Cu(In,Ga)Se2 tandem solar cell to 22.43% power conversion efficiency, which is the highest record among thin film monolithic tandem photovoltaic devices. The conclusion and future outlooks of my works on kesterite and perovskites solar cells are summarized in Chapter 6.

Book Perovskite Solar Cells

Download or read book Perovskite Solar Cells written by Shahzada Ahmad and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.

Book Bioelectrochemical Interface Engineering

Download or read book Bioelectrochemical Interface Engineering written by R. Navanietha Krishnaraj and published by John Wiley & Sons. This book was released on 2019-09-02 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.

Book Hybrid Perovskite Solar Cells

Download or read book Hybrid Perovskite Solar Cells written by Hiroyuki Fujiwara and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.

Book Perovskite Photovoltaics and Optoelectronics

Download or read book Perovskite Photovoltaics and Optoelectronics written by Tsutomu Miyasaka and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.

Book Counter Electrodes for Dye Sensitized and Perovskite Solar Cells  2 Vols

Download or read book Counter Electrodes for Dye Sensitized and Perovskite Solar Cells 2 Vols written by Sining Yun and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to one of the most important aspects for affordable and highly efficient dye-sensitized solar cells Dye-sensitized solar cells have the potential to be one of the most promising photovoltaic technologies for production of renewable and clean energy. Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells offers an introduction to the various types of counter electrode catalysts for dye-sensitized solar cells and perovskite solar cells, including metal and metal compounds, carbon materials, polymers, and composites. With contributions from an international panel of experts, the book contains a discussion of the design and synthesis of the catalysts, characterization and stability of the devices, as well as calculations on properties. The contributors cover a wide range of topics including information on: carbon nanotubes electrocatalysts for I-mediated dye-sensitized solar cells; Pt-loaded composite electrocatalysts for I-mediated dye-sensitized solar cells; metal contact electrodes for perovskite solar cells; and much more. The book also includes insight into the future developments in the field. This important resource Covers the various types of counter electrode catalysts and presents design strategies, synthesis methods, theoretical calculation and stability evaluation Includes information on low-cost counter electrode catalysts and commercial applications of dye-sensitized sensitized solar cells Disscuses how electrode catalysts can be applied in a range of fields, such as solar cells, fuel cells, hydrogen production, and photocatalysis Offers contributions from leading experts in the field including Anders Hagfeldt, one of the world's leading researchers in this field Written for materials scientists, solid state chemists, electrochemists, catalytic chemists, solid state physicists, and chemical industry professionals, Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells is a comprehensive and authoritative guide to dye-sensitized solar cells.

Book Celebrating 1 year of Frontiers in Electronic Materials

Download or read book Celebrating 1 year of Frontiers in Electronic Materials written by Ctirad Uher and published by Frontiers Media SA. This book was released on 2024-01-09 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Computing and Intelligent Engineering

Download or read book Advanced Computing and Intelligent Engineering written by Bibudhendu Pati and published by Springer Nature. This book was released on 2020-03-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers high-quality research papers presented at the 3rd International Conference on Advanced Computing and Intelligent Engineering (ICACIE 2018). It includes sections describing technical advances and the latest research in the fields of computing and intelligent engineering. Intended for graduate students and researchers working in the disciplines of computer science and engineering, the proceedings will also appeal to researchers in the field of electronics, as they cover hardware technologies and future communication technologies.

Book Rational Design of Solar Cells for Efficient Solar Energy Conversion

Download or read book Rational Design of Solar Cells for Efficient Solar Energy Conversion written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2018-10-09 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Book Nanocarbons for Energy Conversion  Supramolecular Approaches

Download or read book Nanocarbons for Energy Conversion Supramolecular Approaches written by Naotoshi Nakashima and published by Springer. This book was released on 2018-08-13 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on nanocarbons (carbon nanotubes, graphene, nanoporous carbon, and carbon black) and related materials for energy conversion, including fuel cells (predominately proton exchange membrane fuel cells [PEMFC]), Li-ion batteries, and supercapacitors. Written by a group of internationally recognized researchers, it offers an in-depth review of the structure, properties, and functions of nanocarbons, and summarizes recent advances in the design, fabrication and characterization of nanocarbon-based catalysts for energy applications. As such, it is an invaluable resource for graduate students, academics and industrial scientists interested in the areas of nanocarbons, energy materials for fuel cells, batteries and supercapacitors as well as materials design, and supramolecular science.

Book Handbook of Perovskite Solar Cells  Volume 1

Download or read book Handbook of Perovskite Solar Cells Volume 1 written by Jiangzhao Chen and published by CRC Press. This book was released on 2024-10-29 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic–inorganic hybrid metal halide perovskite materials have attracted significant attention due to their advantages of low cost, tunable band gap, solution processing, high molar extinction coefficient, low exciton binding energy, and high carrier mobility. Perovskite absorber layers play a decisive role in the realization of high-power conversion efficiency in perovskite solar cells (PSCs). This book systematically and comprehensively discusses device structures, working principles, and optimization strategies of perovskite absorber layers for PSCs to help foster commercialization of these environmentally friendly power sources. It describes strategies to optimize the quality of perovskite films, including composition engineering, dimensional engineering, solvent engineering, strain engineering, additive engineering, and interface engineering. This volume: Introduces crystal structures of perovskites, configurations of PSCs, and their working principles Discusses the modulation of perovskite compositions and dimensionality towards highly stable and efficient perovskite photovoltaics Details the advancements of low-dimensional PSCs including phase stability of perovskite films and strategies for modulating phases Summarizes progress in solvent engineering, additive engineering, and strain engineering in efficient and scalable perovskite photovoltaics Describes the complex crystallization dynamics of perovskites, interface engineering, and synergistic modulation of grain boundaries and interfaces in PSCs Highlights advances in ion migration and mitigation in halide perovskite solar cells and origins and elimination of hysteresis This book is aimed at researchers, advanced students, and industry professionals in materials, energy, and related areas of engineering who are interested in development and commercialization of photovoltaic technologies.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Perovskite Photovoltaics

Download or read book Perovskite Photovoltaics written by Aparna Thankappan and published by Academic Press. This book was released on 2018-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Book New Research Directions in Solar Energy Technologies

Download or read book New Research Directions in Solar Energy Technologies written by Himanshu Tyagi and published by Springer Nature. This book was released on 2021-05-07 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of solar energy have been expanding in recent years across the world. This monograph details such far-reaching and important applications which have the potential for large impact on various segments of the society. It focuses solar energy technologies for various applications such as generation of electric power, heating, energy storage, etc. This volume will be a useful guide for researchers, academics and scientists.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-05-01
  • ISBN : 111928371X
  • Pages : 578 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.