EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Order Difference Methods for Time Dependent PDE

Download or read book High Order Difference Methods for Time Dependent PDE written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Time Dependent Problems and Difference Methods

Download or read book Time Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 2013-07-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 written by Robert M. Kirby and published by Springer. This book was released on 2015-11-26 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.

Book Spectral and High Order Methods for Partial Differential Equations

Download or read book Spectral and High Order Methods for Partial Differential Equations written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.

Book Efficient High Order Discretizations for Computational Fluid Dynamics

Download or read book Efficient High Order Discretizations for Computational Fluid Dynamics written by Martin Kronbichler and published by Springer Nature. This book was released on 2021-01-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

Book Introductory Finite Difference Methods for PDEs

Download or read book Introductory Finite Difference Methods for PDEs written by and published by Bookboon. This book was released on with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 written by Marco L. Bittencourt and published by Springer. This book was released on 2017-11-07 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

Book High order finite difference approximations for hyperbolic problems

Download or read book High order finite difference approximations for hyperbolic problems written by Hannes Frenander and published by Linköping University Electronic Press. This book was released on 2017-01-24 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we use finite difference operators with the Summation-By-Partsproperty (SBP) and a weak boundary treatment, known as SimultaneousApproximation Terms (SAT), to construct high-order accurate numerical schemes.The SBP property and the SAT’s makes the schemes provably stable. The numerical procedure is general, and can be applied to most problems, but we focus on hyperbolic problems such as the shallow water, Euler and wave equations. For a well-posed problem and a stable numerical scheme, data must be available at the boundaries of the domain. However, there are many scenarios where additional information is available inside the computational domain. In termsof well-posedness and stability, the additional information is redundant, but it can still be used to improve the performance of the numerical scheme. As a first contribution, we introduce a procedure for implementing additional data using SAT’s; we call the procedure the Multiple Penalty Technique (MPT). A stable and accurate scheme augmented with the MPT remains stable and accurate. Moreover, the MPT introduces free parameters that can be used to increase the accuracy, construct absorbing boundary layers, increase the rate of convergence and control the error growth in time. To model infinite physical domains, one need transparent artificial boundary conditions, often referred to as Non-Reflecting Boundary Conditions (NRBC). In general, constructing and implementing such boundary conditions is a difficult task that often requires various approximations of the frequency and range of incident angles of the incoming waves. In the second contribution of this thesis,we show how to construct NRBC’s by using SBP operators in time. In the final contribution of this thesis, we investigate long time error bounds for the wave equation on second order form. Upper bounds for the spatial and temporal derivatives of the error can be obtained, but not for the actual error. The theoretical results indicate that the error grows linearly in time. However, the numerical experiments show that the error is in fact bounded, and consequently that the derived error bounds are probably suboptimal.

Book Numerical Solution of Time Dependent Advection Diffusion Reaction Equations

Download or read book Numerical Solution of Time Dependent Advection Diffusion Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems

Book Computational Partial Differential Equations

Download or read book Computational Partial Differential Equations written by Hans Petter Langtangen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Book High Accuracy Algorithm For The Differential Equations Governing Anomalous Diffusion  Algorithm And Models For Anomalous Diffusion

Download or read book High Accuracy Algorithm For The Differential Equations Governing Anomalous Diffusion Algorithm And Models For Anomalous Diffusion written by Weihua Deng and published by World Scientific. This book was released on 2019-01-22 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to extend the application field of 'anomalous diffusion', and describe the newly built models and the simulation techniques to the models.The book first introduces 'anomalous diffusion' from the statistical physics point of view, then discusses the models characterizing anomalous diffusion and its applications, including the Fokker-Planck equation, the Feymann-Kac equations describing the functional distribution of the anomalous trajectories of the particles, and also the microscopic model — Langevin type equation. The second main part focuses on providing the high accuracy schemes for these kinds of models, and the corresponding convergence and stability analysis.

Book Numerical Solution of Differential Equations

Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by Vitoriano Ruas and published by John Wiley & Sons. This book was released on 2016-04-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

Book Numerical Methods and Applications

Download or read book Numerical Methods and Applications written by Ivan Dimov and published by Springer Science & Business Media. This book was released on 2011-01-14 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Numerical Methods and Applications, NMA 2010, held in Borovets, Bulgaria, in August 2010. The 60 revised full papers presented together with 3 invited papers were carefully reviewed and selected from numerous submissions for inclusion in this book. The papers are organized in topical sections on Monte Carlo and quasi-Monte Carlo methods, environmental modeling, grid computing and applications, metaheuristics for optimization problems, and modeling and simulation of electrochemical processes.

Book Iterative Splitting Methods for Differential Equations

Download or read book Iterative Splitting Methods for Differential Equations written by Juergen Geiser and published by CRC Press. This book was released on 2011-06-01 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.In th

Book Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Download or read book Geometric Integrators for Differential Equations with Highly Oscillatory Solutions written by Xinyuan Wu and published by Springer Nature. This book was released on 2021-09-28 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.