EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High accuracy Finite difference Schemes for Linear Wave Propagation

Download or read book High accuracy Finite difference Schemes for Linear Wave Propagation written by Henry Martin Jurgens and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of linear wave propagation and scattering cannot be handled effectively using the second-order methods that are in widespread use today. To obtain accurate results these methods require grids with a resolution in the hundreds of points per wavelength to propagate a wave a distance greater than thirty wavelengths. Methods which can obtain accurate solutions without such high grid resolutions are needed for simulating long-range wave propagation. A procedure is presented for developing high-accuracy finite-difference schemes which are optimized in order to minimize the numerical phase and amplitude errors over a given range of frequencies. These high-accuracy schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. A stable and accurate far-field boundary treatment is used which allows waves to exit the numerical domain with very little spurious reflection. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes using Cartesian and curvilinear grids. Two schemes are studied, one which produces the maximum formal order of accuracy, and one which is optimized for propagation distances less than roughly three hundred wavelengths. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than methods which are second- and fourth-order in space. The optimized scheme can produce significant error reduction relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large.

Book A Review of High order and Optimized Finite difference Methods for Simulating Linear Wave Phenomena

Download or read book A Review of High order and Optimized Finite difference Methods for Simulating Linear Wave Phenomena written by David W. Zingg and published by . This book was released on 1996 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested."

Book The Finite Difference Modelling of Earthquake Motions

Download or read book The Finite Difference Modelling of Earthquake Motions written by Peter Moczo and published by Cambridge University Press. This book was released on 2014-04-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

Book Wave Propagation and Stability for Finite Difference Schemes

Download or read book Wave Propagation and Stability for Finite Difference Schemes written by L. N. Trefethen and published by . This book was released on 1982 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation investigates the behavior of finite difference models of linear hyperbolic partial differential equations. Whereas a hyperbolic equation is nondispersive and nondissipative, difference models are invariably dispersive, and often dissipative too. We set about analyzing them by means of existing techniques from the theory of dispersive wave propagation, making extensive use in particular of the concept of group velocity, the velocity at which energy propagates. The first three chapters present a general analysis of wave propagation in difference models. We describe systematically the effects of dispersion on numerical errors, for both smooth and parasitic waves. The reflection and transmission of waves at boundaries and interfaces are then studied at length. The key point for this is a distinction introduced here between leftgoing and rightgoing signals, which is based not on the characteristics of the original equation, but on the group velocities of the numerical model. The last three chapters examine stability for finite difference models of initial boundary value problems.

Book Effective Computational Methods for Wave Propagation

Download or read book Effective Computational Methods for Wave Propagation written by Nikolaos A. Kampanis and published by CRC Press. This book was released on 2008-02-25 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable

Book High Accuracy Computing Methods

Download or read book High Accuracy Computing Methods written by Tapan Sengupta and published by Cambridge University Press. This book was released on 2013-05-16 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""Presents methods necessary for high accuracy computing of fluid flow and wave phenomena in single source format using unified spectral theory of computing"--Provided by publisher"--

Book A Comparison of Finite difference Schemes for Linear Wave Propagation Problems

Download or read book A Comparison of Finite difference Schemes for Linear Wave Propagation Problems written by Eric Martin Epstein and published by . This book was released on 1995 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Higher Order FDTD Schemes for Waveguides and Antenna Structures

Download or read book Higher Order FDTD Schemes for Waveguides and Antenna Structures written by Nikolaos Kantartzis and published by Springer Nature. This book was released on 2022-06-01 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication provides a comprehensive and systematically organized coverage of higher order finite-difference time-domain or FDTD schemes, demonstrating their potential role as a powerful modeling tool in computational electromagnetics. Special emphasis is drawn on the analysis of contemporary waveguide and antenna structures. Acknowledged as a significant breakthrough in the evolution of the original Yee's algorithm, the higher order FDTD operators remain the subject of an ongoing scientific research. Among their indisputable merits, one can distinguish the enhanced levels of accuracy even for coarse grid resolutions, the fast convergence rates, and the adjustable stability. In fact, as the fabrication standards of modern systems get stricter, it is apparent that such properties become very appealing for the accomplishment of elaborate and credible designs.

Book High Order Difference Methods for Time Dependent PDE

Download or read book High Order Difference Methods for Time Dependent PDE written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.

Book Finite Difference Schemes and Partial Differential Equations

Download or read book Finite Difference Schemes and Partial Differential Equations written by John C. Strikwerda and published by Springer. This book was released on 1989-09-28 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topics in Computational Wave Propagation

Download or read book Topics in Computational Wave Propagation written by Mark Ainsworth and published by Springer Science & Business Media. This book was released on 2003-08-27 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Book The Accurate Finite difference Scheme and Finite element Method for some Partial Differential Equations

Download or read book The Accurate Finite difference Scheme and Finite element Method for some Partial Differential Equations written by Ulziibayar Vandondoo and published by Springer. This book was released on 2023-11-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended for graduate students, researchers and teachers. It is devoted to the construction of high-order schemes of the finite difference method and the finite element method for the solution of multidimensional boundary value problems for various partial differential equations, in particular, linear Helmholtz and wave equations, and nonlinear Burgers' equation. The finite difference method is a standard numerical method for solving boundary value problems. Recently, considerable attention has been paid to constructing an accurate (or exact) difference approximation for some ordinary and partial differential equations. An exact finite difference method is developed for Helmholtz and wave equations with general boundary conditions (including initial condition for wave equation) on the rectangular domain in R2. The method proposed here comes from [4] and is based on separation of variables method and expansion of one-dimensional three-point difference operators for sufficiently smooth solution. The efficiency and accuracy of the method have been tested on several examples.

Book Modern Mathematical Methods and High Performance Computing in Science and Technology

Download or read book Modern Mathematical Methods and High Performance Computing in Science and Technology written by Vinai K. Singh and published by Springer. This book was released on 2016-08-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines to meet and discuss state-of-the-art mathematical methods and high performance computing in science & technology solutions. This has brought new prospects for collaboration across disciplines and ideas that facilitate novel breakthroughs.

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Wave and Scattering Methods for Numerical Simulation

Download or read book Wave and Scattering Methods for Numerical Simulation written by Stefan Bilbao and published by John Wiley & Sons. This book was released on 2004-10-22 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scattering-based numerical methods are increasingly applied to the numerical simulation of distributed time-dependent physical systems. These methods, which possess excellent stability and stability verification properties, have appeared in various guises as the transmission line matrix (TLM) method, multidimensional wave digital (MDWD) filtering and digital waveguide (DWN) methods. This text provides a unified framework for all of these techniques and addresses the question of how they are related to more standard numerical simulation techniques. Covering circuit/scattering models in electromagnetics, transmission line modelling, elastic dynamics, as well as time-varying and nonlinear systems, this book highlights the general applicability of this technique across a variety of disciplines, as well as the inter-relationships between simulation techniques and digital filter design. provides a comprehensive overview of scattering-based numerical integration methods. reviews the basics of classical electrical network theory, wave digital filters, and digital waveguide networks. discusses applications for time-varying and nonlinear systems. includes an extensive bibliography containing over 250 references. Mixing theory and application with numerical simulation results, this book will be suitable for both experts and readers with a limited background in signal processing and numerical techniques.

Book Treatise on Geophysics

Download or read book Treatise on Geophysics written by and published by Elsevier. This book was released on 2015-04-17 with total page 5604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treatise on Geophysics, Second Edition, is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science. Comprehensive and detailed coverage of all aspects of geophysics Fundamental and state-of-the-art discussions of all research topics Integration of topics into a coherent whole

Book Higher Order Numerical Methods for Transient Wave Equations

Download or read book Higher Order Numerical Methods for Transient Wave Equations written by Gary Cohen and published by Springer. This book was released on 2010-12-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003