Download or read book Time Frequency Representations written by Richard Tolimieri and published by Springer Science & Business Media. This book was released on 1997-12-18 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms are developed within this abstract setting without reference to coordinates or dimension, allowing the derivation of new algorithmic structures with significant importance to multidimensional problems and applications. In addition, tensor product representation is fully developed for the modeling of time-frequency computations.
Download or read book Handbook of Numerical Harmonic Analysis written by Vladimir Ivanovich Krylov and published by . This book was released on 1969 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematics for Multimedia written by Mladen Victor Wickerhauser and published by Springer Science & Business Media. This book was released on 2009-10-30 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the mathematics that is foundational to multimedia applications. Featuring a rigorous survey of selected results from algebra and analysis, the work examines tools used to create application software for multimedia signal processing and communication. Replete with exercises, sample programs in Standard C, and numerous illustrations, Mathematics for Multimedia is an ideal textbook for upper undergraduate and beginning graduate students in computer science and mathematics who seek an innovative approach to contemporary mathematics with practical applications. The work may also serve as an invaluable reference for multimedia applications developers and all those interested in the mathematics underlying multimedia design and implementation.
Download or read book Functions Spaces and Expansions written by Ole Christensen and published by Springer Science & Business Media. This book was released on 2010-05-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
Download or read book Special Functions of Mathematical Geo Physics written by Willi Freeden and published by Springer Science & Business Media. This book was released on 2013-02-15 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Download or read book Computational Signal Processing with Wavelets written by Anthony Teolis and published by Birkhäuser. This book was released on 2017-10-02 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology
Download or read book A Basis Theory Primer written by Christopher Heil and published by Springer Science & Business Media. This book was released on 2011 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and their use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory. Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses. The self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.
Download or read book Mathematical Image Processing written by Kristian Bredies and published by Springer. This book was released on 2019-02-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
Download or read book Time Frequency and Time Scale Methods written by Jeffrey A. Hogan and published by Springer Science & Business Media. This book was released on 2007-12-21 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed in this book are several deep connections between time-frequency (Fourier/Gabor) analysis and time-scale (wavelet) analysis, emphasizing the powerful adaptive methods that emerge when separate techniques from each area are properly assembled in a larger context. While researchers at the forefront of these areas are well aware of the benefits of such a unified approach, there remains a knowledge gap in the larger community of practitioners about the precise strengths and limitations of Fourier/Gabor analysis versus wavelets. This book fills that gap by presenting the interface of time-frequency and time-scale methods as a rich area of work. "Foundations of Time-Frequency and Time-Scale Methods" will be suitable for applied mathematicians and engineers in signal/image processing and communication theory, as well as researchers and students in mathematical analysis, signal analysis, and mathematical physics.
Download or read book Handbook of Geometric Analysis written by Lizhen Ji and published by . This book was released on 2008 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Analysis combines differential equations with differential geometry. An important aspect of geometric analysis is to approach geometric problems by studying differential equations. Besides some known linear differential operators such as the Laplace operator, many differential equations arising from differential geometry are nonlinear. A particularly important example is the Monge-Amperè equation. Applications to geometric problems have also motivated new methods and techniques in differential equations. The field of geometric analysis is broad and has had many striking applications. This handbook of geometric analysis--the first of the two to be published in the ALM series--presents introductions and survey papers treating important topics in geometric analysis, with their applications to related fields. It can be used as a reference by graduate students and by researchers in related areas."--Back cover.
Download or read book Practical Fourier Analysis for Multigrid Methods written by Roman Wienands and published by CRC Press. This book was released on 2004-10-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detaile
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Download or read book Fundamentals of Engineering Numerical Analysis written by Parviz Moin and published by Cambridge University Press. This book was released on 2010-08-23 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
Download or read book Walter Gautschi Volume 3 written by Claude Brezinski and published by Springer Science & Business Media. This book was released on 2013-10-24 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi
Download or read book Handbook of Mathematics written by Vialar Thierry and published by BoD - Books on Demand. This book was released on 2023-08-22 with total page 1134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book, revised, consists of XI Parts and 28 Chapters covering all areas of mathematics. It is a tool for students, scientists, engineers, students of many disciplines, teachers, professionals, writers and also for a general reader with an interest in mathematics and in science. It provides a wide range of mathematical concepts, definitions, propositions, theorems, proofs, examples, and numerous illustrations. The difficulty level can vary depending on chapters, and sustained attention will be required for some. The structure and list of Parts are quite classical: I. Foundations of Mathematics, II. Algebra, III. Number Theory, IV. Geometry, V. Analytic Geometry, VI. Topology, VII. Algebraic Topology, VIII. Analysis, IX. Category Theory, X. Probability and Statistics, XI. Applied Mathematics. Appendices provide useful lists of symbols and tables for ready reference. Extensive cross-references allow readers to find related terms, concepts and items (by page number, heading, and objet such as theorem, definition, example, etc.). The publisher’s hope is that this book, slightly revised and in a convenient format, will serve the needs of readers, be it for study, teaching, exploration, work, or research.
Download or read book The Selected Works of Roderick S C Wong written by Dan Dai and published by World Scientific. This book was released on 2015-08-06 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overview of the author's work which includes significant discoveries and pioneering contributions, such as his deep analysis on asymptotic approximations of integrals and uniform asymptotic expansions of orthogonal polynomials and special functions; his important contributions to perturbation methods for ordinary differential equations and difference equations; and his advocation of the Riemann–Hilbert approach for global asymptotics of orthogonal polynomials. The book is an essential source of reference for mathematicians, statisticians, engineers, and physicists. It is also a suitable reading for graduate students and interested senior year undergraduate students. Contents:Volume 1:The Asymptotic Behaviour of μ(z, β,α)A Generalization of Watson's LemmaLinear Equations in Infinite MatricesAsymptotic Solutions of Linear Volterra Integral Equations with Singular KernelsOn Infinite Systems of Linear Differential EquationsError Bounds for Asymptotic Expansions of HankelExplicit Error Terms for Asymptotic Expansions of StieltjesExplicit Error Terms for Asymptotic Expansions of MellinAsymptotic Expansion of Multiple Fourier TransformsExact Remainders for Asymptotic Expansions of FractionalAsymptotic Expansion of the Hilbert TransformError Bounds for Asymptotic Expansions of IntegralsDistributional Derivation of an Asymptotic ExpansionOn a Method of Asymptotic Evaluation of Multiple IntegralsAsymptotic Expansion of the Lebesgue Constants Associated with Polynomial InterpolationQuadrature Formulas for Oscillatory Integral TransformsGeneralized Mellin Convolutions and Their Asymptotic Expansions,A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error BoundsAsymptotic Expansion of a Multiple IntegralAsymptotic Expansion of a Double Integral with a Curve of Stationary PointsSzegö's Conjecture on Lebesgue Constants for Legendre SeriesUniform Asymptotic Expansions of Laguerre PolynomialsTransformation to Canonical Form for Uniform Asymptotic ExpansionsMultidimensional Stationary Phase Approximation: Boundary Stationary PointTwo-Dimensional Stationary Phase Approximation: Stationary Point at a CornerAsymptotic Expansions for Second-Order Linear Difference EquationsAsymptotic Expansions for Second-Order Linear Difference Equations, IIAsymptotic Behaviour of the Fundamental Solution to ∂u/∂t = –(–Δ)muA Bernstein-Type Inequality for the Jacobi PolynomialError Bounds for Asymptotic Expansions of Laplace ConvolutionsVolume 2:Asymptotic Behavior of the Pollaczek Polynomials and Their ZerosJustification of the Stationary Phase Approximation in Time-Domain AsymptoticsAsymptotic Expansions of the Generalized Bessel PolynomialsUniform Asymptotic Expansions for Meixner Polynomials"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function Jν(x)Justification of a Perturbation Approximation of the Klein–Gordon EquationSmoothing of Stokes's Discontinuity for the Generalized Bessel Function. IIUniform Asymptotic Expansions of a Double Integral: Coalescence of Two Stationary PointsUniform Asymptotic Formula for Orthogonal Polynomials with Exponential WeightOn the Asymptotics of the Meixner–Pollaczek Polynomials and Their ZerosGevrey Asymptotics and Stieltjes Transforms of Algebraically Decaying FunctionsExponential Asymptotics of the Mittag–Leffler FunctionOn the Ackerberg–O'Malley ResonanceAsymptotic Expansions for Second-Order Linear Difference Equations with a Turning PointOn a Two-Point Boundary-Value Problem with Spurious SolutionsShooting Method for Nonlinear Singularly Perturbed Boundary-Value ProblemsVolume 3:Asymptotic Expansion of the Krawtchouk Polynomials and Their ZerosOn a Uniform Treatment of Darboux's MethodLinear Difference Equations with Transition PointsUniform Asymptotics for Jacobi Polynomials with Varying Large Negative Parameters — A Riemann–Hilbert ApproachUniform Asymptotics of the Stieltjes–Wigert Polynomials via the Riemann–Hilbert ApproachA Singularly Perturbed Boundary-Value Problem Arising in Phase TransitionsOn the Number of Solutions to Carrier's ProblemAsymptotic Expansions for Riemann–Hilbert ProblemsOn the Connection Formulas of the Third Painlevé TranscendentHyperasymptotic Expansions of the Modified Bessel Function of the Third Kind of Purely Imaginary OrderGlobal Asymptotics for Polynomials Orthogonal with Exponential Quartic WeightThe Riemann–Hilbert Approach to Global Asymptotics of Discrete Orthogonal Polynomials with Infinite NodesGlobal Asymptotics of the Meixner PolynomialsAsymptotics of Orthogonal Polynomials via Recurrence RelationsUniform Asymptotic Expansions for the Discrete Chebyshev PolynomialsGlobal Asymptotics of the Hahn PolynomialsGlobal Asymptotics of Stieltjes–Wigert Polynomials Readership: Undergraduates, gradudates and researchers in the areas of asymptotic approximations of integrals, singular perturbation theory, difference equations and Riemann–Hilbert approach. Key Features:This book provides a broader viewpoint of asymptoticsIt contains about half of the papers that Roderick Wong has written on asymptoticsIt demonstrates how analysis is used to make some formal results mathematically rigorousThis collection presents the scientific achievements of the authorKeywords:Asymptotic Analysis;Perturbation Method;Special Functions;Orthogonal Polynomials;Integral Transforms;Integral Equations;Ordinary Differential Equations;Difference Equations;Riemann–Hilbert Problem
Download or read book Handbook of Analysis and Its Foundations written by Eric Schechter and published by Academic Press. This book was released on 1996-10-24 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/