EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Practical Guide to Data Mining for Business and Industry

Download or read book A Practical Guide to Data Mining for Business and Industry written by Andrea Ahlemeyer-Stubbe and published by John Wiley & Sons. This book was released on 2014-03-31 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

Book Data Mining for Business Analytics

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Book Data Mining and Business Intelligence

Download or read book Data Mining and Business Intelligence written by Stephan Kudyba and published by IGI Global. This book was released on 2001-01-01 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Book Data Mining for Business Analytics

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2016-04-18 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "...full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Book Data Mining and Business Analytics with R

Download or read book Data Mining and Business Analytics with R written by Johannes Ledolter and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.

Book Business Intelligence in Plain Language

Download or read book Business Intelligence in Plain Language written by Jeremy M. Kolb and published by CreateSpace. This book was released on 2013-05-21 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: One day a man walked into Asgard Inc. and changed the company forever. Unlike anyone who came before, he remembered and understood data as naturally as a fish swims in water. The CEO was shocked at how well the man knew the company. He started posing questions to this man. Who are my best customers? Why is this product struggling? Where is my greatest growth happening? The man answered these and more. Using his understanding of data, he identified key new markets, he discovered the best places to invest capital, and he even predicted the future. Overnight Asgard Inc. changed. Where before the CEO relied on limited information and gut feelings, now true knowledge guided his actions. The CEO took the man's hand in gratitude and asked, "Who are you?" and he replied, "I am Business Intelligence." Business Intelligence(BI) is shrouded in mystery for a lot of us but it doesn't need to stay that way. Business Intelligence in Plain Language is a systematic exploration of this complicated tool. I'll teach you about what it does, how it works, and most importantly how you can benefit from it. In this book you will learn about: Business Intelligence Data Mining Data Warehousing Data Discovery Big Data Outlier Detection Pattern Recognition Predictive Modeling Data Transformation and much more This book is your practical guide to understanding and implementing Business Intelligence.

Book Predictive Data Mining

    Book Details:
  • Author : Sholom M. Weiss
  • Publisher : Morgan Kaufmann
  • Release : 1998
  • ISBN : 9781558604032
  • Pages : 244 pages

Download or read book Predictive Data Mining written by Sholom M. Weiss and published by Morgan Kaufmann. This book was released on 1998 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical guide to provide a complete, generalized road map for developing data-mining applications, together with advice on performing these large-scale, open-ended analyses for real-world data warehouses.

Book Business Intelligence

    Book Details:
  • Author : Carlo Vercellis
  • Publisher : John Wiley & Sons
  • Release : 2011-08-10
  • ISBN : 1119965470
  • Pages : 314 pages

Download or read book Business Intelligence written by Carlo Vercellis and published by John Wiley & Sons. This book was released on 2011-08-10 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.

Book Guide to Business Data Analytics

Download or read book Guide to Business Data Analytics written by Iiba and published by . This book was released on 2020-08-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Guide to Business Data Analytics provides a foundational understanding of business data analytics concepts and includes how to develop a framework; key techniques and application; how to identify, communicate and integrate results; and more. This guide acts as a reference for the practice of business data analytics and is a companion resource for the Certification in Business Data Analytics (IIBA(R)- CBDA). Explore more information about the Certification in Business Data Analytics at IIBA.org/CBDA. About International Institute of Business Analysis International Institute of Business Analysis(TM) (IIBA(R)) is a professional association dedicated to supporting business analysis professionals deliver better business outcomes. IIBA connects almost 30,000 Members, over 100 Chapters, and more than 500 training, academic, and corporate partners around the world. As the global voice of the business analysis community, IIBA supports recognition of the profession, networking and community engagement, standards and resource development, and comprehensive certification programs. IIBA Publications IIBA publications offer a wide variety of knowledge and insights into the profession and practice of business analysis for the entire business community. Standards such as A Guide to the Business Analysis Body of Knowledge(R) (BABOK(R) Guide), the Agile Extension to the BABOK(R) Guide, and the Global Business Analysis Core Standard represent the most commonly accepted practices of business analysis around the globe. IIBA's reports, research, whitepapers, and studies provide guidance and best practices information to address the practice of business analysis beyond the global standards and explore new and evolving areas of practice to deliver better business outcomes. Learn more at iiba.org.

Book Data Science for Business

Download or read book Data Science for Business written by Foster Provost and published by "O'Reilly Media, Inc.". This book was released on 2013-07-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Book Data Mining Techniques in CRM

Download or read book Data Mining Techniques in CRM written by Konstantinos K. Tsiptsis and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

Book Data Mining and Predictive Analytics

Download or read book Data Mining and Predictive Analytics written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2015-02-19 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Book Making Sense of Data I

Download or read book Making Sense of Data I written by Glenn J. Myatt and published by John Wiley & Sons. This book was released on 2014-07-02 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “...a well-written book on data analysis and data mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practical statistics and data analysis...” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available TraceisTM software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.

Book Making Sense of Data

    Book Details:
  • Author : Glenn J. Myatt
  • Publisher : John Wiley & Sons
  • Release : 2007-02-26
  • ISBN : 0470101016
  • Pages : 294 pages

Download or read book Making Sense of Data written by Glenn J. Myatt and published by John Wiley & Sons. This book was released on 2007-02-26 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, step-by-step approach to making sense out of data Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data. Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including: * Problem definitions * Data preparation * Data visualization * Data mining * Statistics * Grouping methods * Predictive modeling * Deployment issues and applications Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project. From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.

Book Data Science

    Book Details:
  • Author : Herbert Jones
  • Publisher :
  • Release : 2020-01-03
  • ISBN : 9781647483043
  • Pages : 134 pages

Download or read book Data Science written by Herbert Jones and published by . This book was released on 2020-01-03 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2 comprehensive manuscripts in 1 book Data Science: What the Best Data Scientists Know About Data Analytics, Data Mining, Statistics, Machine Learning, and Big Data - That You Don't Data Science for Business: Predictive Modeling, Data Mining, Data Analytics, Data Warehousing, Data Visualization, Regression Analysis, Database Querying

Book Data Mining for Business Intelligence

Download or read book Data Mining for Business Intelligence written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2006-12-11 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Book Getting Started with Business Analytics

Download or read book Getting Started with Business Analytics written by David Roi Hardoon and published by CRC Press. This book was released on 2013-03-26 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.