EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Growth and Characterization of CVD Ru and Amorphous Ru P Alloy Films for Liner Application in Cu Interconnect

Download or read book Growth and Characterization of CVD Ru and Amorphous Ru P Alloy Films for Liner Application in Cu Interconnect written by Jinhong Shin and published by . This book was released on 2007 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Copper interconnect requires liner materials that function as a diffusion barrier, a seed layer for electroplating, and an adhesion promoting layer. Ruthenium has been considered as a promising liner material, however it has been reported that Ru itself is not an effective Cu diffusion barrier due to its microstructure, which is polycrystalline with columnar grains. The screening study of Ru precursors revealed that all Ru films were polycrystalline with columnar structure, and, due to its strong 3D growth mode, a conformal and ultrathin Ru film was difficult to form, especially on high aspect ratio features. The microstructure of Ru films can be modified by incorporating P. Amorphous Ru(P) films are formed by chemical vapor deposition at 575 K using a single source precursor, cis-RuH2(P(CH3)3)4, or dual sources, Ru3(CO)12 and P(CH3)3 or P(C6H5)3 The films contain Ru and P, which are in zero-valent states, and C as an impurity. Phosphorus dominantly affects the film microstructure, and incorporating> 13% P resulted in amorphous Ru(P) films. Metastable Ru(P) remains amorphous after annealing at 675 K for 3 hr, and starts recrystallization at ~775 K. The density of states analysis of the amorphous Ru(P) alloy illustrates metallic character of the films, and hybridization between Ru 4d and P 3p orbitals, which contributes to stabilizing the amorphous structure. Co-dosing P(CH)3 with Ru3(CO)12 improves film step coverage, and the most conformal Ru(P) film is obtained with cis-RuH2(P(CH3)3)4; a fully continuous 5 nm Ru(P) film is formed within 1 æm deep, 8:1 aspect ratio trenches. First principles density functional theory calculations illustrate degraded Cu/Ru adhesion by the presence of P at the interface, however, due to the strong Ru-Cu bonds, amorphous Ru(P) forms a stronger interface with Cu than Ta and TaN do. Cu diffusion studies at 575 K suggests improved barrier property of amorphous Ru(P) films over polycrystalline PVD Ru.

Book Growth and Characterization of Amorphous Ultrathin Ruthenium Metal Films

Download or read book Growth and Characterization of Amorphous Ultrathin Ruthenium Metal Films written by Daniel Edgar Bost and published by . This book was released on 2017 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Copper interconnect systems in modern microelectronics require the use of one or more liner layers and a capping layer in order to prevent copper diffusion into the other materials of the device. Ruthenium has been suggested as a replacement for the currently-standard Ta/TaN stack used for this purpose due to its low bulk diffusivity of copper and its good adhesion to both substrate materials and copper, but at very low thicknesses the polycrystalline nature of pure Ru allows for diffusion of copper along grain boundaries, resulting in the failure of the barrier. Because amorphous metal alloys do not form grains, amorphous Ru alloys have been examined as a way to eliminate the grain boundary diffusion of copper across the film. Early attempts to produce such films with phosphorus as an alloying element by chemical vapor deposition (CVD) using Ru3(CO)12 and organic phosphorus precursors such as trimethylphosphine have performed well relative to Ta/TaN as a barrier layer at 5 nm thickness. However, high concentrations of carbon were incorporated into the films during CVD by the P precursors. Carbon increases the resistivity of Ru(P) and adds an unnecessary element to the calculated structure of the amorphous alloy. To reduce resistivity, lower-carbon Ru(P) alloy films are grown at 250 °C using Ru3(CO)12 and a hydride gas (PH3) as the P precursor. Diborane (B2H6) is used to grow an alternate alloy, Ru(B). Ru(P) and Ru(B) alloys are predicted by first-principles calculations to be amorphous above 20 at.% P for Ru(P) and 10 at.% B for Ru(B). Growth studies revealed amorphous Ru(P) above 17 at.% P and amorphous Ru(B) above 10 at.% B, with polycrystalline films formed at lower concentrations. Both Ru(P) and Ru(B) are found to deposit as smooth, continuous films at the 3 nm thickness. Metal-insulator-semiconductor (MIS) capacitor structures consisting of copper / amorphous alloy / SiO2 / Si / Al stacks were used to test barrier performance under electrical stress. This testing confirms that the amorphous Ru films perform adequately as Cu diffusion barriers.

Book Growth and Characterization of Ru Films Deposited by Chemical Vapor Deposition

Download or read book Growth and Characterization of Ru Films Deposited by Chemical Vapor Deposition written by Kelly Marriott Thom and published by . This book was released on 2009 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: As device dimensions in integrated circuits scale down, there is an increasing need to deposit ultra-thin, smooth, continuous films for use in applications such as the liner in back end processing. The liner must have good adhesion to both Cu and the dielectric, act as a Cu diffusion barrier, and be conductive enough to allow the electroplating of Cu. Ruthenium (Ru) has been considered as a possible material to be implemented into the liner due to its low electrical resistivity, high thermal and chemical stability, and negligible solubility with copper. Chemical vapor deposition (CVD) is an attractive growth technique for Ru films because it allows conformal deposition in high-aspect ratio features. However, there are some limitations that must be overcome in the deposition of Ru films. CVD Ru films suffer from poor nucleation on oxide and nitride substrates. Poor nucleation leads to rough, large-grained polycrystalline columnar films, which may not coalesce into a continuous film until the thickness greatly exceeds the requirements for the liner. This dissertation presents surface chemistry and film growth studies involving Ru CVD and focuses on improving the nucleation and properties of Ru films. In situ surface analysis techniques including X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to study the fundamental adsorption behavior of the Ru precursor, (2,4- dimethylpentadienyl)(ethylcyclopentadienyl)Ru or DER, on polycrystalline Ta, both with and without iodine adsorbed on the Ta. Based upon these results, CVD films were grown using DER/O2, and it was shown that nucleation and film properties can be improved by the addition of methyl iodide. Ru films grown using DER/O2 show sparse nucleation, which leads to very rough surface topography and large polycrystalline columnar grains. The addition of methyl iodide during growth significantly improves nucleation and results in smoother, smaller-grained films. Iodine adsorbs on the initially-formed Ru islands and continuously segregates through the film to the surface during the entire deposition. In addition, CVD films grown with Ru3(CO)12 were studied. Use of the Ru3(CO)12 precursor results in thin, ultra-smooth films that show little to no columnar grain structure.

Book Deposition and Properties of Co  and Ru based Ultra thin Films

Download or read book Deposition and Properties of Co and Ru based Ultra thin Films written by Lucas Benjamin Henderson and published by . This book was released on 2009 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165 °C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350 °C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.

Book Thin Films by Chemical Vapour Deposition

Download or read book Thin Films by Chemical Vapour Deposition written by C.E. Morosanu and published by Elsevier. This book was released on 2016-06-22 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2540 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomic Layer Deposition Applications 6

Download or read book Atomic Layer Deposition Applications 6 written by J. W. Elam and published by The Electrochemical Society. This book was released on 2010-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuously expanding realm of Atomic Layer Deposition (ALD) Applications is the focus of this reoccurring symposium. ALD can enable the precise deposition of ultra-thin, highly conformal coatings over complex 3D topographies with controlled thickness and composition. This issue of ECS Transactions contains peer reviewed papers presented at the symposium. A broad spectrum of ALD applications is featured, including novel nano-composites and nanostructures, dielectrics for state-of-the-art transistors and capacitors, optoelectronics, and a variety of other emerging applications.

Book CRC Handbook of Metal Etchants

Download or read book CRC Handbook of Metal Etchants written by Perrin Walker and published by CRC Press. This book was released on 1990-12-11 with total page 1434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication presents cleaning and etching solutions, their applications, and results on inorganic materials. It is a comprehensive collection of etching and cleaning solutions in a single source. Chemical formulas are presented in one of three standard formats - general, electrolytic or ionized gas formats - to insure inclusion of all necessary operational data as shown in references that accompany each numbered formula. The book describes other applications of specific solutions, including their use on other metals or metallic compounds. Physical properties, association of natural and man-made minerals, and materials are shown in relationship to crystal structure, special processing techniques and solid state devices and assemblies fabricated. This publication also presents a number of organic materials which are widely used in handling and general processing...waxes, plastics, and lacquers for example. It is useful to individuals involved in study, development, and processing of metals and metallic compounds. It is invaluable for readers from the college level to industrial R & D and full-scale device fabrication, testing and sales. Scientific disciplines, work areas and individuals with great interest include: chemistry, physics, metallurgy, geology, solid state, ceramic and glass, research libraries, individuals dealing with chemical processing of inorganic materials, societies and schools.

Book Metallization

    Book Details:
  • Author : S. P. Murarka
  • Publisher : Butterworth-Heinemann
  • Release : 1993
  • ISBN :
  • Pages : 268 pages

Download or read book Metallization written by S. P. Murarka and published by Butterworth-Heinemann. This book was released on 1993 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title covers fundemental concepts, properties and applicabilities of metals and alloys for use in various metallization schemes. Metallizations form the key components on electronic circuits - controlling device properties and providing power and device interconnections with the outside world or with other devices. The recent advent of submicron dimensions and increasingly faster devices in the semiconductor have challenged researchers to keep metallization schemes in line with new demanding requirements.

Book Physics of Electronic Conduction in Solids

Download or read book Physics of Electronic Conduction in Solids written by Frank J. Blatt and published by . This book was released on 1968 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classification of solids -- Lattice vibrations and lattice specific heat -- Equilibrium properties of a free-electron gas -- Electrons in a periodic lattice -- Transport equation -- Relaxation mechanisms -- Conductivity and related phenomena : metals -- Homogeneous semiconductors -- Rectifying junctions and transistors -- Optical properties of semiconductors -- Properties of semiconductors and metals in strong magnetic fields -- Appendix A. Summary of Elementary Quantum Mechanics -- Appendix B. Units and Conversion factors -- Appendix C. The Periodic Table -- Appendix D. Values of Important Physical Constants and Some Convenient Conversion Factors -- Appendix E. List of Symbols.

Book Composite Materials

Download or read book Composite Materials written by Kamal K. Kar and published by Springer. This book was released on 2016-10-14 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

Book Advanced Interconnects for ULSI Technology

Download or read book Advanced Interconnects for ULSI Technology written by Mikhail Baklanov and published by John Wiley & Sons. This book was released on 2012-02-17 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.

Book Copper Interconnect Technology

Download or read book Copper Interconnect Technology written by Tapan Gupta and published by Springer Science & Business Media. This book was released on 2010-01-22 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.

Book Principles of Chemical Vapor Deposition

Download or read book Principles of Chemical Vapor Deposition written by Daniel Dobkin and published by Springer Science & Business Media. This book was released on 2003-04-30 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Chemical Vapor Deposition provides a simple introduction to heat and mass transfer, surface and gas phase chemistry, and plasma discharge characteristics. In addition, the book includes discussions of practical films and reactors to help in the development of better processes and equipment. This book will assist workers new to chemical vapor deposition (CVD) to understand CVD reactors and processes and to comprehend and exploit the literature in the field. The book reviews several disparate fields with which many researchers may have only a passing acquaintance, such as heat and mass transfer, discharge physics, and surface chemistry, focusing on key issues relevant to CVD. The book also examines examples of realistic industrial reactors and processes with simplified analysis to demonstrate how to apply the principles to practical situations. The book does not attempt to exhaustively survey the literature or to intimidate the reader with irrelevant mathematical apparatus. This book is as simple as possible while still retaining the essential physics and chemistry. The book is generously illustrated to assist the reader in forming the mental images which are the basis of understanding.

Book Electrodeposition from Ionic Liquids

Download or read book Electrodeposition from Ionic Liquids written by Frank Endres and published by John Wiley & Sons. This book was released on 2008-09-08 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting the dramatic rise in interest shown in this field over the last few years, this book collates the widespread knowledge into one handy volume. It covers in depth all classes of ionic liquids thus far in existence, with the individual chapters written by internationally recognized experts. The text is written to suit several levels of difficulty, containing information on basic physical chemistry in ionic liquids, a theory on the conductivity as well as plating protocols suited to undergraduate courses. The whole is rounded off with an appendix providing experimental procedures to enable readers to experiment with ionic liquids for themselves.

Book Nanoparticulate Materials

Download or read book Nanoparticulate Materials written by Kathy Lu and published by John Wiley & Sons. This book was released on 2012-09-25 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Serving as the only systematic and comprehensive treatment on the topic of nanoparticle-based materials, this book covers synthesis, characterization, assembly, shaping and sintering of all types of nanoparticles including metals, ceramics, and semiconductors. A single-authored work, it is suitable as a graduate-level text in nanomaterials courses.

Book Ferroelectrics

    Book Details:
  • Author : Mickaël Lallart
  • Publisher : BoD – Books on Demand
  • Release : 2011-08-23
  • ISBN : 9533074566
  • Pages : 266 pages

Download or read book Ferroelectrics written by Mickaël Lallart and published by BoD – Books on Demand. This book was released on 2011-08-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on the application of ferroelectric devices to innovative systems. In particular, the use of these materials as varying capacitors, gyroscope, acoustics sensors and actuators, microgenerators and memory devices will be exposed, providing an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric devices.