EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graphics Processing Unit Based High Performance Computing in Radiation Therapy

Download or read book Graphics Processing Unit Based High Performance Computing in Radiation Therapy written by Xun Jia and published by CRC Press. This book was released on 2018-09-21 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.

Book Graphics Processing Unit Based High Performance Computing in Radiation Therapy

Download or read book Graphics Processing Unit Based High Performance Computing in Radiation Therapy written by Xun Jia and published by CRC Press. This book was released on 2018-09-21 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.

Book Accelerating Radiation Dose Calculation with High Performance Computing and Machine Learning for Large scale Radiotherapy Treatment Planning

Download or read book Accelerating Radiation Dose Calculation with High Performance Computing and Machine Learning for Large scale Radiotherapy Treatment Planning written by Ryan Neph and published by . This book was released on 2020 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation therapy is powered by modern techniques in precise planning and execution of radiation delivery, which are being rapidly improved to maximize its benefit to cancer patients. In the last decade, radiotherapy experienced the introduction of advanced methods for automatic beam orientation optimization, real-time tumor tracking, daily plan adaptation, and many others, which improve the radiation delivery precision, planning ease and reproducibility, and treatment efficacy. However, such advanced paradigms necessitate the calculation of orders of magnitude more causal dose deposition data, increasing the time requirement of all pre-planning dose calculation. Principles of high-performance computing and machine learning were applied to address the insufficient speeds of widely-used dose calculation algorithms to facilitate translation of these advanced treatment paradigms into clinical practice. To accelerate CT-guided X-ray therapies, Collapsed-Cone Convolution-Superposition (CCCS), a state-of-the-art analytical dose calculation algorithm, was accelerated through its novel implementation on highly parallelized GPUs. This context-based GPU-CCCS approach takes advantage of X-ray dose deposition compactness to parallelize calculation across hundreds of beamlets, reducing hardware-specific overheads, and enabling acceleration by two to three orders of magnitude compared to existing GPU-based beamlet-by-beamlet approaches. Near-linear increases in acceleration are achieved with a distributed, multi-GPU implementation of context-based GPU-CCCS. Dose calculation for MR-guided treatment is complicated by electron return effects (EREs), exhibited by ionizing electrons in the strong magnetic field of the MRI scanner. EREs necessitate the use of much slower Monte Carlo (MC) dose calculation, limiting the clinical application of advanced treatment paradigms due to time restrictions. An automatically distributed framework for very-large-scale MC dose calculation was developed, granting linear scaling of dose calculation speed with the number of utilized computational cores. It was then harnessed to efficiently generate a large dataset of paired high- and low-noise MC doses in a 1.5 tesla magnetic field, which were used to train a novel deep convolutional neural network (CNN), DeepMC, to predict low-noise dose from faster high-noise MC- simulation. DeepMC enables 38-fold acceleration of MR-guided X-ray beamlet dose calculation, while remaining synergistic with existing MC acceleration techniques to achieve multiplicative speed improvements. This work redefines the expectation of X-ray dose calculation speed, making it possible to apply new highly-beneficial treatment paradigms to standard clinical practice for the first time.

Book High Performance Computing for the Optimization of Radiation Therapy Treatment Plans

Download or read book High Performance Computing for the Optimization of Radiation Therapy Treatment Plans written by Felix Liu and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A GPU based Implementation for Improved Online Rebinning Performance in Clinical 3 D PET

Download or read book A GPU based Implementation for Improved Online Rebinning Performance in Clinical 3 D PET written by Dilip Reddy Patlolla and published by . This book was released on 2009 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online rebinning is an important and well-established technique for reducing the time required to process Positron Emission Tomography data. However, the need for efficient data processing in a clinical setting is growing rapidly and is beginning to exceed the capability of traditional online processing methods. High-count rate applications such as Rubidium 3-D PET studies can easily saturate current online rebinning technology. Real-time processing at these high-count rates is essential to avoid significant data loss. In addition, the emergence of time-of-flight (TOF) scanners is producing very large data sets for processing. TOF applications require efficient online Rebinning methods so as to maintain high patient throughput. Currently, new hardware architectures such as Graphics Processing Units (GPUs) are available to speedup data parallel and number crunching algorithms. In comparison to the usual parallel systems, such as multiprocessor or clustered machines, GPU hardware can be much faster and above all, it is significantly cheaper. The GPUs have been primarily delivered for graphics for video games but are now being used for High Performance computing across many domains. The goal of this thesis is to investigate the suitability of the GPU for PET rebinning algorithms.

Book High Performance Fourier Volume Rendering on GPUs

Download or read book High Performance Fourier Volume Rendering on GPUs written by Marwan Abdellah and published by LAP Lambert Academic Publishing. This book was released on 2015-04-02 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Volume Rendering is considered one of the most significant volume visualization techniques that has been employed extensively in digital radiography. It gained wide acceptance by the medical community and particularly in clinical radio-oncology as a fast tool for generating digital x-ray radiographs due to its reduced time-complexity. Driven by the tremendous horsepower embedded in its highly parallel architecture, the GPU has turned out from being a dedicated chip for graphics applications to be an attractive high performance computing platform for addressing advanced, complex and parallelizable non-graphics applications. In this sequel, a high performance implementation for the Fourier volume rendering pipeline is presented. This implementation exploits the parallel architecture and the formidable computing power of the state-of-the-art CUDA-enabled GPUs. The pure GPU-based implementation outperforms an optimized CPU-GPU hybrid implementation by a factor of 30x for the entire pipeline and 247x for the rendering loop."

Book Strategies for Adaptive Radiation Therapy

Download or read book Strategies for Adaptive Radiation Therapy written by Junyi Xia and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Image guided radiation therapy (IGRT) requires developing advanced methods for target localization. Once target motion is identified, the patient specific treatment margin can be incorporated into the treatment planning, accurately delivering the radiation dose to the target and minimizing the dose to the normal tissues. Deformable image registration (DIR) has become an indispensable tool to analyze target motion and measure physiological change by temporal imaging or time series volumetric imaging, such as four-dimensional computed tomography (4DCT). Current DIR algorithms suffer from inverse inconsistency, where the deformation mapping is not unique after switching the order of the images. Moreover, long computation time of current DIR implementation limits its clinical application to offline analysis. This dissertation makes several major contributions: First, an inverse consistent constraint (ICC) is proposed to constrain the uniqueness of the correspondence between image pairs. The proposed ICC has the advantage of 1) improving registration accuracy and robustness, 2) not requiring explicitly computing the inverse of the deformation field, and 3) reducing the inverse consistency error (ICE). Moreover, a variational registration model, based on the maximum likelihood estimation, is proposed to accelerate the algorithm convergence and allow for inexact image pixel matching within an optimized variation for noisy image pairs.

Book High Performance Multiscale Image Processing Framework on Multi GPUs  graphics Processing Units  with Applications to Unbiased Diffeomorphic Atlas Construction

Download or read book High Performance Multiscale Image Processing Framework on Multi GPUs graphics Processing Units with Applications to Unbiased Diffeomorphic Atlas Construction written by Linh Khanh Ha and published by . This book was released on 2011 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Physical Quality Assurance Tools for Radiotherapy

Download or read book Computational and Physical Quality Assurance Tools for Radiotherapy written by Yan Jiang Graves and published by . This book was released on 2013 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation therapy aims at delivering a prescribed amount of radiation dose to cancerous targets while sparing dose to normal organs. Treatment planning and delivery in modern radiotherapy are highly complex. To ensure the accuracy of the delivered dose to a patient, a quality assurance (QA) procedure is needed before the actual treatment delivery. This dissertation aims at developing computational and physical tools to facilitate the QA process. In Chapter 2, we have developed a fast and accurate computational QA tool using a graphics processing unit based Monte Carlo (MC) dose engine. This QA tool aims at identifying any errors in the treatment planning stage and machine delivery process by comparing three dose distributions: planned dose computed by a treatment planning system, planned dose and delivered dose reconstructed using the MC method. Within this tool, several modules have been built. (1) A denoising algorithm to smooth the MC calculated dose. We have also investigated the effects of statistical uncertainty in MC simulations on a commonly used dose comparison metric. (2) A linear accelerator source model with a semi-automatic commissioning process. (3) A fluence generation module. With all these modules, a web application for this QA tool with a user friendly interface has been developed to provide users with easy access to our tool, facilitating its clinical utilizations. Even after an initial treatment plan fulfills the QA requirements, a patient may experience inter-fractional anatomy variations, which compromise the initial plan optimality. To resolve this issue, adaptive radiotherapy (ART) has been proposed, where treatment plan is redesigned based on most recent patient anatomy. In Chapter 3, we have constructed a physical deformable head and neck (HN) phantom with in-vivo dosimetry capability. This phantom resembles HN patient geometry and simulates tumor shrinkage with a high level of realism. The ground truth deformation field can be measured from built-in surface markers, which is then used to verify the accuracy of an important ART step of deformable image registration. Our experiments also demonstrate the feasibility of using this phantom as an end-to-end ART QA phantom with an emphasis on testing the dose deliver accuracy.

Book FRoG  a Fast Robust Analytical Dose Engine on GPU for P  4He  12C and 16O Particle Therapy

Download or read book FRoG a Fast Robust Analytical Dose Engine on GPU for P 4He 12C and 16O Particle Therapy written by Stewart Mein and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiotherapy with protons and heavier ions landmarks a novel era in the field of highprecision cancer therapy. To identify patients most benefiting from this technologically demanding therapy, fast assessment of comparative treatment plans utilizing different ion species is urgently needed. Moreover, to overcome uncertainties of actual in-vivo physical dose distribution and biological effects elicited by different radiation qualities, development of a reliable high-throughput algorithm is required. To this end, we engineered a unique graphics processing unit (GPU) based software architecture allowing rapid and robust dose calculation. Fast dose Recalculation on GPU (FRoG) currently operates with four particle beams, i.e., raster-scanning proton, helium, carbon and oxygen ions. Designed to perform fast and accurate calculations for both physical and biophysical quantities, FRoG operates an advanced analytical pencil beam algorithm using parallelized procedures on a GPU. Clinicians and medical physicists can assess both dose and dose-averaged linear energy transfer (LET) distributions for proton therapy (and in turn effective dose by applying variable RBE schemes) to further scrutinize plans for acceptance or potential re-planning purposes within minutes. In addition, various biological model predictions are readily accessible for heavy ion therapy, such as the local effect model (LEM) and microdosimetric kinetic model (MKM). FRoG has been extensively benchmarked against gold standard Monte Carlo simulations and experimental data. Evaluating against commercial treatment planning systems demonstrates the strength of FRoG in better predicting dose distributions in complex clinical settings. In preparation for the upcoming translation of novel ions, case-/disease-specific ion-beam selection and advanced multi-particle treatment modalities at the Heidelberg Ion-beam Therapy Center (HIT), we quantified the accuracy limits in particle therapy treatment planning under complex heterogeneous conditions for the four ions (p, 4He, 12C, 16O) for various dose engines, both analytical algorithms and Monte Carlo code. Devised in-house, FRoG landmarks the first GPU-based treatment planning system (non commercial) for raster-scanning 4He ion beams, with an official treatment program set for early 2020. Since its inception, FRoG has been installed and is currently in operation clinically at four centers across Europe: HIT (Heidelberg, Germany), CNAO (Pavia, Italy) , Aarhus (Denmark) and the Normandy Proton Therapy Center (Caen, France). Here, the development and validation of FRoG as well as clinical investigations and advanced topics in particle therapy dose calculation are covered. The thesis is presented in cumulative format and comprises four peer reviewed publications.

Book Numerical Computations with GPUs

Download or read book Numerical Computations with GPUs written by Volodymyr Kindratenko and published by Springer. This book was released on 2014-07-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.

Book Engineering Education

Download or read book Engineering Education written by and published by . This book was released on 1990 with total page 1170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Peterson s Graduate Programs in Engineering and Applied Sciences  1996

Download or read book Peterson s Graduate Programs in Engineering and Applied Sciences 1996 written by Peterson's Guides and published by Peterson Nelnet Company. This book was released on 1995-12-10 with total page 1518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate students depend on this series and ask for it by name. Why? For over 30 years, it's been the only one-stop source that supplies all of their information needs. The new editions of this six-volume set contain the most comprehensive information available on more than 1,500 colleges offering over 31,000 master's, doctoral, and professional-degree programs in more than 350 disciplines.New for 1997 -- Non-degree-granting research centers, institutes, and training programs that are part of a graduate degree program.Five discipline-specific volumes detail entrance and program requirements, deadlines, costs, contacts, and special options, such as distance learning, for each program, if available. Each Guide features "The Graduate Adviser", which discusses entrance exams, financial aid, accreditation, and more.Interest in these fields has never been higher! And this is the source to the 3,400 programs currently available -- from bioengineering and computer science to construction management.

Book Medical Image Reconstruction

Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.

Book INIS Atomindex

Download or read book INIS Atomindex written by and published by . This book was released on 1988 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: