Download or read book Geometrical Theory of Diffraction for Electromagnetic Waves written by Graeme L. James and published by IET. This book was released on 1986 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the book, apart from expounding the Geometrical Theory of Diffraction (GTD) method, is to present useful formulations that can be readily applied to solve practical engineering problems.
Download or read book Geometrical Theory of Diffraction written by Vladimir Andreevich Borovikov and published by IET. This book was released on 1994 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the ideas underlying geometrical theory of diffraction (GTD) along with its relationships with other EM theories.
Download or read book Fundamentals of the Physical Theory of Diffraction written by Pyotr Ya. Ufimtsev and published by John Wiley & Sons. This book was released on 2007-02-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.
Download or read book Principles of Optics written by Max Born and published by Elsevier. This book was released on 2013-06-01 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell's phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.
Download or read book Electromagnetic Diffraction Modeling and Simulation with MATLAB written by Gökhan Apaydin and published by Artech House. This book was released on 2021-02-28 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.
Download or read book Electromagnetic Wave Propagation Radiation and Scattering written by Akira Ishimaru and published by John Wiley & Sons. This book was released on 2017-08-09 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Download or read book Aperture Antennas and Diffraction Theory written by Edward V. Jull and published by IET. This book was released on 1981 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two alternative methods of aperture antenna analysis are described in this book.
Download or read book Diffraction Theory written by V. M. Babich and published by Alpha Science International, Limited. This book was released on 2008 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title contains the detailed descriptions of the Sommerfeld-Malyuzhinets technique and the related mathematical aspects.
Download or read book Parabolic Equation Methods for Electromagnetic Wave Propagation written by Mireille Levy and published by IET. This book was released on 2000 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Modern Electromagnetic Scattering Theory with Applications written by Andrey V. Osipov and published by John Wiley & Sons. This book was released on 2017-01-20 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics
Download or read book Balanis Advanced Engineering Electromagnetics written by Constantine A. Balanis and published by John Wiley & Sons. This book was released on 2024-01-24 with total page 1140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Balanis’ Advanced Engineering Electromagnetics The latest edition of the foundational guide to advanced electromagnetics Balanis’ third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field. Highlights of the 3rd Edition include: A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for: Control and broadband RCS reduction using checkerboard designs. Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern. Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization. Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization. Throughout the book, there are: Additional examples, numerous end-of-chapter problems, and PPT notes. Fifty three MATLAB computer programs for computations, graphical visualizations and animations. Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.
Download or read book Novel Technologies for Microwave and Millimeter Wave Applications written by Jean-Fu Kiang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel Technologies for Microwave and Millimeter-Wave Applications provides an overview of current research status in selected field, to facilitate a learning process from concepts to practices, from component design to system architecture, and from small scale to large scale. Each chapter focuses on a topic and is organized to be self-sufficient. Contents in each chapter include concise description of relevant background information, major issues, current trend and future challenges. Useful references are also listed for further reading. Novel Technologies for Microwave and Millimeter-Wave Applications is suitable as a textbook for senior or graduate courses in microwave engineering.
Download or read book Radio Propagation and Adaptive Antennas for Wireless Communication Links written by Nathan Blaunstein and published by John Wiley & Sons. This book was released on 2007-02-26 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Antennas and Propogation for Wireless Communication covers the basics of wireless communication system design with emphasis on antennas and propagation. It contains information on antenna fundamentals and the latest developments in smart antennas, as well as the radiation effects of hand-held devices. Antennas and Propogation for Wireless Communication provides a complete discussion of all the topics important to the design of wireless communication systems. Written by acknowledged authorities in their respective fields, the book deals with practical applications and presents real world examples. A solutions manual for college adopters accompanies the text. Ideal for engineers working in communication, antennas, and propagation for telecomm, military, and aerospace applications, as well as students of electrical engineering, this book covers all topics needed for a complete system design.
Download or read book Handbook of Antennas in Wireless Communications written by Lal Chand Godara and published by CRC Press. This book was released on 2018-10-03 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt: The move toward worldwide wireless communications continues at a remarkable pace, and the antenna element of the technology is crucial to its success. With contributions from more than 30 international experts, the Handbook of Antennas in Wireless Communications brings together all of the latest research and results to provide engineering professionals and students with a one-stop reference on the theory, technologies, and applications for indoor, hand-held, mobile, and satellite systems. Beginning with an introduction to wireless communications systems, it offers an in-depth treatment of propagation prediction and fading channels. It then explores antenna technology with discussion of antenna design methods and the various antennas in current use or development for base stations, hand held devices, satellite communications, and shaping beams. The discussions then move to smart antennas and phased array technology, including details on array theory and beamforming techniques. Space diversity, direction-of-arrival estimation, source tracking, and blind source separation methods are addressed, as are the implementation of smart antennas and the results of field trials of systems using smart antennas implemented. Finally, the hot media topic of the safety of mobile phones receives due attention, including details of how the human body interacts with the electromagnetic fields of these devices. Its logical development and extensive range of diagrams, figures, and photographs make this handbook easy to follow and provide a clear understanding of design techniques and the performance of finished products. Its unique, comprehensive coverage written by top experts in their fields promises to make the Handbook of Antennas in Wireless Communications the standard reference for the field.
Download or read book Principles of Scattering and Transport of Light written by Rémi Carminati and published by Cambridge University Press. This book was released on 2021-07-29 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic and accessible treatment of light scattering and transport in disordered media from first principles.
Download or read book Radio Propagation and Adaptive Antennas for Wireless Communication Networks written by Nathan Blaunstein and published by John Wiley & Sons. This book was released on 2014-04-03 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radio Propagation and Adaptive Antennas for Wireless Communication Networks, 2nd Edition, presents a comprehensive overview of wireless communication system design, including the latest updates to considerations of over-the-terrain, atmospheric, and ionospheric communication channels. New features include the latest experimentally-verified stochastic approach, based on several multi-parametric models; all-new chapters on wireless network fundamentals, advanced technologies, and current and modern multiple access networks; and helpful problem sets at the conclusion of each chapter to enhance clarity. The volume’s emphasis remains on a thorough examination of the role of obstructions on the corresponding propagation phenomena that influence the transmission of radio signals through line-of-sight (LOS) and non-line-of-sight (NLOS) propagation conditions along the radio path between the transmitter and the receiver antennas—and how adaptive antennas, used at the link terminals, can be used to minimize the deleterious effects of such obstructions. With its focus on 3G, 4G, MIMO, and the latest wireless technologies, Radio Propagation and Adaptive Antennas for Wireless Communication Networks represents an invaluable resource to topics critical to the design of contemporary wireless communication systems. Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage. Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications. Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditions New chapters on fundamentals of wireless networks, cellular and non-cellular, multiple access networks, new applications of adaptive antennas for positioning, and localization of subscribers Includes the addition of problem sets at the end of chapters describing fundamental aspects of wireless communication and antennas.
Download or read book Analyzing the Physics of Radio Telescopes and Radio Astronomy written by Yeap, Kim Ho and published by IGI Global. This book was released on 2020-02-07 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.