Download or read book Generative AI in Practice A Comprehensive Guide to Techniques and Applications written by Anand Vemula and published by Anand Vemula. This book was released on with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide dives deep into the world of Generative AI, a revolutionary field where AI creates entirely new things. Go beyond traditional AI methods and discover how Generative AI can revolutionize industries, empower creativity, and shape the future. Here's what you'll find inside: Breakthrough Techniques: Explore prominent methods like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) in a clear and engaging way. Real-World Applications: Witness the transformative impact of Generative AI across various sectors, from accelerating drug discovery in healthcare to automating code generation in software development. The Power of Creation: Discover how Generative AI can fuel creativity in design, content creation, and education, offering inspiration and boosting efficiency. Generative AI in Practice equips you with the knowledge to harness this groundbreaking technology: Essential Tools and Platforms: Learn about popular generative AI tools and platforms readily available for you to explore and experiment with. Seamless Integration: Discover strategies to integrate Generative AI seamlessly into your existing workflows, maximizing its impact. The Ethical Landscape: Address crucial considerations surrounding data bias, fairness, and the responsible development of Generative AI. This book empowers you to: Understand the core concepts of Generative AI and its potential to create entirely new data formats. Implement generative techniques to automate tasks, enhance creative processes, and solve problems in your field. Become a responsible user of Generative AI, fostering innovation while considering ethical implications. Generative AI in Practice is your one-stop guide to understanding, implementing, and harnessing the power of Generative AI, whether you're a business leader, a creative professional, a developer, or simply curious about the future of technology.
Download or read book Artificial Intelligence in Practice written by Bernard Marr and published by John Wiley & Sons. This book was released on 2019-04-15 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Generative AI in Action written by Amit Bahree and published by Simon and Schuster. This book was released on 2024-10-29 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI can transform your business by streamlining the process of creating text, images, and code. This book will show you how to get in on the action! Generative AI in Action is the comprehensive and concrete guide to generative AI you’ve been searching for. It introduces both AI’s fundamental principles and its practical applications in an enterprise context—from generating text and images for product catalogs and marketing campaigns, to technical reporting, and even writing software. Inside, author Amit Bahree shares his experience leading Generative AI projects at Microsoft for nearly a decade, starting well before the current GPT revolution. Inside Generative AI in Action you will find: • A practical overview of of generative AI applications • Architectural patterns, integration guidance, and best practices for generative AI • The latest techniques like RAG, prompt engineering, and multi-modality • The challenges and risks of generative AI like hallucinations and jailbreaks • How to integrate generative AI into your business and IT strategy Generative AI in Action is full of real-world use cases for generative AI, showing you where and how to start integrating this powerful technology into your products and workflows. You’ll benefit from tried-and-tested implementation advice, as well as application architectures to deploy GenAI in production at enterprise scale. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology In controlled environments, deep learning systems routinely surpass humans in reading comprehension, image recognition, and language understanding. Large Language Models (LLMs) can deliver similar results in text and image generation and predictive reasoning. Outside the lab, though, generative AI can both impress and fail spectacularly. So how do you get the results you want? Keep reading! About the book Generative AI in Action presents concrete examples, insights, and techniques for using LLMs and other modern AI technologies successfully and safely. In it, you’ll find practical approaches for incorporating AI into marketing, software development, business report generation, data storytelling, and other typically-human tasks. You’ll explore the emerging patterns for GenAI apps, master best practices for prompt engineering, and learn how to address hallucination, high operating costs, the rapid pace of change and other common problems. What's inside • Best practices for deploying Generative AI apps • Production-quality RAG • Adapting GenAI models to your specific domain About the reader For enterprise architects, developers, and data scientists interested in upgrading their architectures with generative AI. About the author Amit Bahree is Principal Group Product Manager for the Azure AI engineering team at Microsoft. The technical editor on this book was Wee Hyong Tok. Table of Contents Part 1 1 Introduction to generative AI 2 Introduction to large language models 3 Working through an API: Generating text 4 From pixels to pictures: Generating images 5 What else can AI generate? Part 2 6 Guide to prompt engineering 7 Retrieval-augmented generation: The secret weapon 8 Chatting with your data 9 Tailoring models with model adaptation and fine-tuning Part 3 10 Application architecture for generative AI apps 11 Scaling up: Best practices for production deployment 12 Evaluations and benchmarks 13 Guide to ethical GenAI: Principles, practices, and pitfalls A The book’s GitHub repository B Responsible AI tools
Download or read book Generative Ai A Comprehensive Guide to Mastering Generative Ai Understanding the Essentials and Applications of This Breakthrough Technology written by Donald Brewer and published by Donald Brewer. This book was released on 101-01-01 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book also delves into the ethical considerations and challenges associated with implementing generative ai, providing readers with a balanced perspective on its impact on society and the workforce. By exploring the role of leadership in harnessing generative ai for organizational success, readers will gain valuable insights into how to navigate this rapidly evolving landscape. Whether you're a business leader seeking to unlock the potential of generative ai for your organization or a technology enthusiast eager to explore its applications across industries, this book offers a comprehensive overview of one of the most exciting developments in artificial intelligence today. You will unravel valuable insights: • A deep dive into the ethical frameworks needed for responsible ai deployment in your organization • Actionable tips to integrate ai seamlessly into your existing workflow • Unparalleled case studies from businesses that have successfully tapped into the ai advantage • A toolkit to leverage competitive intelligence insights through ai • A crystal-clear demystification of common misconceptions surrounding ai • A practical ai vocabulary that every business leader should know In this book, i will provide you with a comprehensive overview of generative ai, including the underlying principles and the latest trends in the field. I will also show you how to apply generative ai to a variety of tasks and applications in your business as well as various other industries responsibly and safely. One of the key benefits of generative ai is its ability to learn from massive realms of data and generate new, unseen data.
Download or read book The Generative AI Practitioner s Guide written by Arup Das and published by TinyTechMedia LLC. This book was released on 2024-07-20 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™
Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Download or read book Mastering Marketing Data Science written by Iain Brown and published by John Wiley & Sons. This book was released on 2024-04-26 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the Power of Data: Transform Your Marketing Strategies with Data Science In the digital age, understanding the symbiosis between marketing and data science is not just an advantage; it's a necessity. In Mastering Marketing Data Science: A Comprehensive Guide for Today's Marketers, Dr. Iain Brown, a leading expert in data science and marketing analytics, offers a comprehensive journey through the cutting-edge methodologies and applications that are defining the future of marketing. This book bridges the gap between theoretical data science concepts and their practical applications in marketing, providing readers with the tools and insights needed to elevate their strategies in a data-driven world. Whether you're a master's student, a marketing professional, or a data scientist keen on applying your skills in a marketing context, this guide will empower you with a deep understanding of marketing data science principles and the competence to apply these principles effectively. Comprehensive Coverage: From data collection to predictive analytics, NLP, and beyond, explore every facet of marketing data science. Practical Applications: Engage with real-world examples, hands-on exercises in both Python & SAS, and actionable insights to apply in your marketing campaigns. Expert Guidance: Benefit from Dr. Iain Brown's decade of experience as he shares cutting-edge techniques and ethical considerations in marketing data science. Future-Ready Skills: Learn about the latest advancements, including generative AI, to stay ahead in the rapidly evolving marketing landscape. Accessible Learning: Tailored for both beginners and seasoned professionals, this book ensures a smooth learning curve with a clear, engaging narrative. Mastering Marketing Data Science is designed as a comprehensive how-to guide, weaving together theory and practice to offer a dynamic, workbook-style learning experience. Dr. Brown's voice and expertise guide you through the complexities of marketing data science, making sophisticated concepts accessible and actionable.
Download or read book Cloud Computing written by Thomas Erl and published by Pearson Education. This book was released on 2013 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes cloud computing as a service that is "highly scalable" and operates in "a resilient environment". The authors emphasize architectural layers and models - but also business and security factors.
Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Download or read book Applied Artificial Intelligence written by Mariya Yao and published by . This book was released on 2018-04-30 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
Download or read book Artificial Intelligence Simplified written by Binto George and published by CSTrends LLP. This book was released on 2016-01-08 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces key Artificial Intelligence (AI) concepts in an easy-to-read format with examples and illustrations. A complex, long, overly mathematical textbook does not always serve the purpose of conveying the basic AI concepts to most people. Someone with basic knowledge in Computer Science can have a quick overview of AI (heuristic searches, genetic algorithms, expert systems, game trees, fuzzy expert systems, natural language processing, super intelligence, etc.) with everyday examples. If you are taking a basic AI course and find the traditional AI textbooks intimidating, you may choose this as a “bridge” book, or as an introductory textbook. For students, there is a lower priced edition (ISBN 978-1944708016) of the same book. Published by CSTrends LLP.
Download or read book Innovative Methods in Computer Science and Computational Applications in the Era of Industry 5 0 written by D. Jude Hemanth and published by Springer Nature. This book was released on with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Download or read book Artificial Intelligence in Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2020-10-14 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
Download or read book Considerations and Techniques for Applied Linguistics and Language Education Research written by Bui, Hung Phu and published by IGI Global. This book was released on 2024-05-28 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the field of linguistics and language education expands and evolves, scholars and practitioners are encountering a multitude of challenges. Complex research methodologies, ethical considerations, and technological advancements create hurdles to contributors in the field. Moreover, the interdisciplinary nature of applied linguistics provides a diverse array of approaches and techniques, often leading to confusion and uncertainty about the most appropriate methods to employ. The book Considerations and Techniques for Applied Linguistics and Language Education Research provides definitive solutions to these challenges. By analyzing current practices and concepts in research methods, this book equips scholars and practitioners with the necessary tools and insights to navigate the complexities of applied linguistics research. From qualitative and quantitative approaches to cutting-edge techniques like artificial intelligence and corpus analysis, each chapter provides invaluable guidance for conducting rigorous and impactful research.