Download or read book General Fractional Derivatives with Applications in Viscoelasticity written by Xiao-Jun Yang and published by Academic Press. This book was released on 2020-04-03 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: General Fractional Derivatives with Applications in Viscoelasticity introduces the newly established fractional-order calculus operators involving singular and non-singular kernels with applications to fractional-order viscoelastic models from the calculus operator viewpoint. Fractional calculus and its applications have gained considerable popularity and importance because of their applicability to many seemingly diverse and widespread fields in science and engineering. Many operations in physics and engineering can be defined accurately by using fractional derivatives to model complex phenomena. Viscoelasticity is chief among them, as the general fractional calculus approach to viscoelasticity has evolved as an empirical method of describing the properties of viscoelastic materials. General Fractional Derivatives with Applications in Viscoelasticity makes a concise presentation of general fractional calculus. - Presents a comprehensive overview of the fractional derivatives and their applications in viscoelasticity - Provides help in handling the power-law functions - Introduces and explores the questions about general fractional derivatives and its applications
Download or read book Fractional Calculus And Waves In Linear Viscoelasticity An Introduction To Mathematical Models written by Francesco Mainardi and published by World Scientific. This book was released on 2010-05-18 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive overview of the author's work on the fields of fractional calculus and waves in linear viscoelastic media, which includes his pioneering contributions on the applications of special functions of the Mittag-Leffler and Wright types.It is intended to serve as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature given in the huge general bibliography.This book is likely to be of interest to applied scientists and engineers./a
Download or read book Fractional Differential Equations written by Anatoly Kochubei and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-02-19 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Download or read book General Fractional Derivatives written by Xiao-Jun Yang and published by CRC Press. This book was released on 2019-05-10 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: General Fractional Derivatives: Theory, Methods and Applications provides knowledge of the special functions with respect to another function, and the integro-differential operators where the integrals are of the convolution type and exist the singular, weakly singular and nonsingular kernels, which exhibit the fractional derivatives, fractional integrals, general fractional derivatives, and general fractional integrals of the constant and variable order without and with respect to another function due to the appearance of the power-law and complex herbivores to figure out the modern developments in theoretical and applied science. Features: Give some new results for fractional calculus of constant and variable orders. Discuss some new definitions for fractional calculus with respect to another function. Provide definitions for general fractional calculus of constant and variable orders. Report new results of general fractional calculus with respect to another function. Propose news special functions with respect to another function and their applications. Present new models for the anomalous relaxation and rheological behaviors. This book serves as a reference book and textbook for scientists and engineers in the fields of mathematics, physics, chemistry and engineering, senior undergraduate and graduate students. Dr. Xiao-Jun Yang is a full professor of Applied Mathematics and Mechanics, at China University of Mining and Technology, China. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Modelling and Analysis, International Journal of Numerical Methods for Heat & Fluid Flow, and Thermal Science.
Download or read book Methods of Mathematical Modelling and Computation for Complex Systems written by Jagdev Singh and published by Springer Nature. This book was released on 2021-08-26 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains several contemporary topics in the areas of mathematical modelling and computation for complex systems. The readers find several new mathematical methods, mathematical models and computational techniques having significant relevance in studying various complex systems. The chapters aim to enrich the understanding of topics presented by carefully discussing the associated problems and issues, possible solutions and their applications or relevance in other scientific areas of study and research. The book is a valuable resource for graduate students, researchers and educators in understanding and studying various new aspects associated with complex systems. Key Feature • The chapters include theory and application in a mix and balanced way. • Readers find reasonable details of developments concerning a topic included in this book. • The text is emphasized to present in self-contained manner with inclusion of new research problems and questions.
Download or read book Applications Of Fractional Calculus In Physics written by Rudolf Hilfer and published by World Scientific. This book was released on 2000-03-02 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Download or read book Fractional Differential Equations written by Igor Podlubny and published by Elsevier. This book was released on 1998-10-27 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives
Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Download or read book Fractional Calculus And Waves In Linear Viscoelasticity An Introduction To Mathematical Models Second Edition written by Francesco Mainardi and published by World Scientific. This book was released on 2022-08-16 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional Calculus and Waves in Linear Viscoelasticity (Second Edition) is a self-contained treatment of the mathematical theory of linear (uni-axial) viscoelasticity (constitutive equation and waves) with particular regard to models based on fractional calculus. It serves as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature. In particular the relevant role played by some special functions is pointed out along with their visualization through plots. Graphics are extensively used in the book and a large general bibliography is included at the end.This new edition keeps the structure of the first edition but each chapter has been revised and expanded, and new additions include a novel appendix on complete monotonic and Bernstein functions that are known to play a fundamental role in linear viscoelasticity.This book is suitable for engineers, graduate students and researchers interested in fractional calculus and continuum mechanics.
Download or read book Computational Viscoelasticity written by Severino P. C. Marques and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a guide how to solve problems in which viscoelasticity is present using existing commercial computational codes. The book gives information on codes’ structure and use, data preparation and output interpretation and verification. The first part of the book introduces the reader to the subject, and to provide the models, equations and notation to be used in the computational applications. The second part shows the most important Computational techniques: Finite elements formulation, Boundary elements formulation, and presents the solutions of Viscoelastic problems with Abaqus.
Download or read book Mathematical Problems in Linear Viscoelasticity written by Mauro Fabrizio and published by SIAM. This book was released on 1992-01-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes general mathematical modeling of viscoelastic materials as systems with fading memory. Discusses the interrelation between topics such as existence, uniqueness, and stability of initial boundary value problems, variational and extremum principles, and wave propagation. Demonstrates the deep connection between the properties of the solution to initial boundary value problems and the requirements of the general physical principles. Discusses special techniques and new methods, including Fourier and Laplace transforms, extremum principles via weight functions, and singular surfaces and discontinuity waves.
Download or read book Applications of Viscoelasticity written by Pouria Hajikarimi and published by Elsevier. This book was released on 2021-04-27 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Viscoelasticity: Bituminous Materials Characterization and Modeling starts with an introduction to the theory of viscoelasticity, emphasizing its importance to various applications in material characterization and modeling. It next looks at constitutive viscoelastic functions, outlines basic equations for different loading conditions, and introduces the Boltzmann superposition principle, relaxation modulus, and creep compliance. Mechanical models, including integer-order and fractional-order are studied next, featuring real experimentation data alongside the benefits and drawbacks of using each model in various real-world scenarios. The book then covers the correspondence principle, followed by time–temperature superposition, featuring a simple procedure to construct a real master curve and challenges that might be encountered. The concluding chapters cover the Hopkins and Hamming, Park and Kim, and General Power law methods for interconversion of constitutive viscoelastic functions, applications of viscoelasticity for experimental tests, and incremental form of viscoelastic relations for numerical modeling. The book also includes supplementary codes that users can duplicate and use in their own work. - Takes an applied approach to material viscoelasticity, explaining complicated viscoelastic equations and principles - Presents examples of those equations and principles being applied to common problems in realworld settings - Covers constitutive viscoelastic functions, including relaxation modulus and creep compliance - Outlines the construction of a master curve of viscoelastic material considering time–temperature superposition - Couples the correspondence principle with common viscoelastic experiments, such as threepoint bending beam, axial and torsional bar, and dynamic shear rheometer - Provides supplementary codes
Download or read book Recent Trends in Fractional Calculus and Its Applications written by Praveen Agarwal and published by Elsevier. This book was released on 2024-07-02 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Trends in Fractional Calculus and Its Applications addresses the answer to this very basic question: "Why is Fractional Calculus important?" Until recent times, Fractional Calculus was considered as a rather esoteric mathematical theory without applications, but in the last few decades there has been an explosion of research activities on the application of Fractional Calculus to very diverse scientific fields ranging from the physics of diffusion and advection phenomena, to control systems to finance and economics. An important part of mathematical modelling of objects and processes is a description of their dynamics.The term Fractional Calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to noninteger (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. Several mathematicians contributed to this subject over the years. People like Liouville, Riemann, and Weyl made major contributions to the theory of Fractional Calculus. In recent decades the field of Fractional Calculus has attracted the interest of researchers in several areas, including mathematics, physics, chemistry, engineering, finance, and social sciences. - Provides the most recent and up-to-date developments in the Fractional Calculus and its application areas - Presents pre-preparation ideas to help researchers/scientists/clinicians face the new challenges in the application of fractional differential equations - Helps researchers and scientists understand the importance of the Fractional Calculus to solve many problems in Biomedical Engineering and applied sciences
Download or read book Fractional Calculus and Its Applications written by B. Ross and published by Springer. This book was released on 2006-11-15 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Variable Order Fractional Calculus of Variations written by Ricardo Almeida and published by Springer. This book was released on 2018-06-29 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Variable-Order Fractional Calculus of Variations is devoted to the study of fractional operators with variable order and, in particular, variational problems involving variable-order operators. This brief presents a new numerical tool for the solution of differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one, an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. The contributors consider variational problems that may be subject to one or more constraints, where the functional depends on a combined Caputo derivative of variable fractional order. In particular, they establish necessary optimality conditions of Euler–Lagrange type. As the terminal point in the cost integral is free, as is the terminal state, transversality conditions are also obtained. The Variable-Order Fractional Calculus of Variations is a valuable source of information for researchers in mathematics, physics, engineering, control and optimization; it provides both analytical and numerical methods to deal with variational problems. It is also of interest to academics and postgraduates in these fields, as it solves multiple variational problems subject to one or more constraints in a single brief.
Download or read book Discrete Fractional Calculus written by Christopher Goodrich and published by Springer. This book was released on 2016-02-09 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1—2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1—2 may be covered quickly and readers may then skip to Chapters 6—7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6—7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1—5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus.
Download or read book Viscoelastic Solids 1998 written by Roderic S. Lakes and published by CRC Press. This book was released on 2017-11-22 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Viscoelastic Solids covers the mathematical theory of viscoelasticity and physical insights, causal mechanisms, and practical applications. The book: presents a development of the theory, addressing both transient and dynamic aspects as well as emphasizing linear viscoelasticity synthesizes the structure of the theory with the aim of developing physical insight illustrates the methods for the solution of stress analysis problems in viscoelastic objects explores experimental methods for the characterization of viscoelastic materials describes the phenomenology of viscoelasticity in a variety of materials, including polymers, metals, high damping alloys, rock, piezoelectric materials, cellular solids, dense composite materials, and biological materials analyzes high damping and extremely low damping provides the theory of viscoelastic composite materials, including examples of various types of structure and the relationships between structure and mechanical properties contains examples on the use of viscoelastic materials in preventing and alleviating human suffering Viscoelastic Solids also demonstrates the use of viscoelasticity for diverse applications, such as earplugs, gaskets, computer disks, satellite stability, medical diagnosis, injury prevention, vibration abatement, tire performance, sports, spacecraft explosions, and music.