EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gasdynamic Phenomena and Propulsive Performance of Pulse Detonation Engines

Download or read book Gasdynamic Phenomena and Propulsive Performance of Pulse Detonation Engines written by James T. Peace and published by . This book was released on 2019 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pulsed detonation engine (PDE) is an advanced propulsion system that makes use of intermittent detonations to provide thrust. In recent decades, the PDE has been at the center of various propulsion research efforts focused on practical implementation of a reliable detonation-based engine for aerospace propulsion applications. However, many design challenges remain to be solved due to the PDEs unsteady operating characteristics. In particular, the unsteady nature of the thrust chamber flow field inherent to the PDE operation makes the design of nozzles aimed at adequately expanding the burned detonation products especially difficult. In order to address this design challenge, a series of related analytical, numerical, and experimental studies have been conducted, which are focused on investigating the manner in which the PDE propulsive performance is governed by the various gasdynamic processes occurring within the thrust chamber and nozzle flow fields. In this study, three primary PDE configurations are considered. These configurations include fully- and partially-filled PDEs, and PDEs equipped with diverging nozzles. For each configuration, a comprehensive description of the PDE flow field is provided, whereby details concerning the evolution and interaction of various gasdynamic waves and discontinuities are discussed. Additionally, the dominant gasdynamic processes within the thrust chamber and nozzle flow fields are identified, as these processes must be appropriately modeled in order to accurately evaluate the propulsive performance.The collision of a detonation wave with a contact surface separating detonable and non-combustible mixtures is a fundamental gasdynamic interaction process that takes place every cycle in the cyclic operation of the PDE. This interaction can drastically influence the evolving thrust chamber flow field and the subsequent propulsive performance metrics. To improve its understanding, this gasdynamic interaction is investigated analytically in order to predict the resulting transmitted shock wave properties, and the necessary conditions for a shock, Mach, or rarefaction wave to reflect at the contact surface. Concurrently, this interaction is investigated experimentally with the use of a detonation-driven shock tube. The analytical and experimental results indicate that the transmitted shock can either be amplied or attenuated depending on the reflection type at the contact surface, and the ratio of the acoustic impedance across the interface. A quasi-one-dimensional method of characteristics (MOC) model is developed to evaluate the single-cycle gasdynamic flow field and associated propulsive performance of general PDE configurations. The model incorporates the current detonation-contact surface interaction results in order to accurately treat the one-dimensional collision of a detonation wave with a contact discontinuity. Additionally, the MOC model is developed using a simplified unit process approach with an explicit inverse time marching algorithm in order to readily construct the complex thrust chamber flow field along a predefined grid. A thorough validation of the model is presented over a broad range of operating conditions with existing higher-fidelity numerical and experimental performance data for fully- and partially-filled PDEs, and PDEs equipped with diverging nozzles. This includes PDEs operating with a variety of detonable fuels, non-combustible inert mixtures, ll fractions, blowdown pressure ratios, and nozzle expansion area ratios. Lastly, a detailed discussion of the model limitations is provided, and particular operating conditions that lead to a breakdown of the assumptions used in the development of the model are addressed. A simplified analytical model is developed based on control volume analysis for evaluating the primary performance metrics of a general fully-filled PDE. The MOC model is used to justify and establish a simplified thrust relation based solely on the ow properties at the exit plane of a fully-filled PDE. A detailed analytical description of the thrust chamber flow field is provided, from which an analytical piece wise expression for thrust is derived based on the exit plane pressure history. This expression is then used to evaluate the specific impulse, total impulse, and time-averaged thrust of a fully-filled PDE. This simplified model is validated against the current MOC model and higher-fidelity numerical and experimental performance data for a variety of detonable fuels, equivalence ratios, and blowdown pressure ratios.Using the current MOC model, the single-cycle propulsive performance of partially-filled PDEs is investigated. The results of the detonation-contact surface interaction study are used to tailor the acoustic impedance of the non-combustible mixture at a fixed fill fraction in order to demonstrate the sensitivity of the thrust chamber flow field to the non-combustible acoustic impedance. Subsequently, the detonable fill fraction and noncombustible acoustic impedance are varied simultaneously in order to characterize the general partially-lled PDE performance. The partial-filling performance benefit is also investigated by varying the initial pressure and temperature of the non-combustible mixture in order to highlight the advantage of using a cold purge gas during operation, and disadvantage of operating in sub-atmospheric environments. It is demonstrated that the partially-filled specific impulse performance results generated with the MOC model from these various parametric investigations are successfully modeled using a previously developed scaling law, whereby this scaling law is extended in the current work to partially-filled total impulse and time-averaged thrust.Similarly, the single-cycle propulsive performance of PDEs with diverging nozzles is examined. A parametric investigation is conducted to characterize the combined effects of nozzle expansion area and blowdown pressure ratios on the resulting thrust chamber and nozzle flow fields. Detailed discussion of the transient nozzle flow field is provided in order to emphasize the influence of non-combustible acoustic impedance on the partial-fill effect in diverging nozzles. Moreover, a comparative study is used to demonstrate the performance advantages of a diverging nozzle in sub-atmospheric environments compared to a straight extension nozzle. Lastly, a detailed parametric investigation is conducted by simultaneously varying the nozzle length, expansion area ratio, and blowdown pressure ratio in order to determine the optimum nozzle performance characteristics. An analytical model is formulated to predict the strength and motion of a transmitted shock wave through a general contour diverging nozzle for PDEs. The model is derived on the basis of a two-equation approximation of the generalized CCW (Chester Chisnell Whitham) theory for treating general shock dynamics in non-uniform channels. A major feature of the two-equation model is the ability to incorporate non-uniformity in the flow immediately following the shock wave, which turns out to be essential for describing the transmitted shock dynamics in PDE nozzles. This model is then used to demonstrate the effects of thrust chamber length on the magnitude of ow non-uniformity behind the transmitted shock entering the nozzle, and how drastically this can influence the nature of shock attenuation within the nozzle. Further, the shock dynamics model is used in conjunction with the MOC model to demonstrate how different nozzle wall curvature influences the PDE propulsive performance, due to the changes in transmitted shock attenuation and gasdynamic over-expansion in the nozzle flow field during the nozzle starting process.

Book Detonation Control for Propulsion

Download or read book Detonation Control for Propulsion written by Jiun-Ming Li and published by Springer. This book was released on 2017-12-05 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Book Combustion Processes in Propulsion

Download or read book Combustion Processes in Propulsion written by Gabriel Roy and published by Butterworth-Heinemann. This book was released on 2006 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. Cumbustion Processes in Propulsion focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions

Book A State of Art Review on Thermodynamics Performance Analysis in Pulse Detonation Combustor

Download or read book A State of Art Review on Thermodynamics Performance Analysis in Pulse Detonation Combustor written by Pinku Debnath and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulse detonation engines (PDEs) are most exciting for future propulsion generation. Detonation combustion in pulse detonation combustor is an energetic combustion process which is differs from other combustion process. The detonation wave propagation in detonation tube is a pulse setting combustion phenomena. Detonation combustion process is thousands times faster than deflagration combustion process. PDE utilizes several pulse of detonation wave to produce propulsive force. The potential applications of PDEs are drastically reduces the cost of orbit transfer vehicle system and flying mode applications. Of course it can be used as ground level applications also. Draw back are DDT in shortest possible time in the combustor. In this regards, worldwide researchers are focusing on scientific and technical issues related to improvement of PDC. The present chapter deals with review study on detonation combustion process, historical overview on chemical kinetics, calorimetric and entropy transport, energy and exergy analysis and factor effecting on deflagration to detonation transition with recommendable future research.

Book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Download or read book Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power written by R. J. Litchford and published by . This book was released on 2001 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pulse Detonation Engine

Download or read book Pulse Detonation Engine written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2021-10-14 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Pulse Detonation Engine A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle. To date, no practical PDE has been put into production, but several testbed engines have been built and one was successfully integrated into a low-speed demonstration aircraft that flew in sustained PDE powered flight in 2008. In June 2008, the Defense Advanced Research Projects Agency (DARPA) unveiled Blackswift, which was intended to use this technology to reach speeds of up to Mach 6 How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Pulse Detonation Engine Chapter 2: Nuclear Pulse Propulsion Chapter 3: Rotating Detonation Engine Chapter 4: AIMStar Chapter 5: Antimatter-catalyzed nuclear pulse propulsion Chapter 6: Antimatter rocket Chapter 7: Nuclear electric rocket Chapter 8: Nuclear power in space Chapter 9: Nuclear propulsion Chapter 10: Nuclear thermal rocket Chapter 11: Project Pluto Chapter 12: Fission-fragment rocket (II) Answering the public top questions about pulse detonation engine. (III) Real world examples for the usage of pulse detonation engine in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technology in each industry to have 360-degree full understanding of pulse detonation engine' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of pulse detonation engine.

Book A Multidisciplinary Study of Pulse Detonation Engine Propulsion

Download or read book A Multidisciplinary Study of Pulse Detonation Engine Propulsion written by and published by . This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Penn State-led MURI effort on Pulse Detonation Engine (PDE) Research is detailed in this report. The multidisciplinary research effort brought together a team of leading researchers in the areas of the initiation and propagation of detonations, liquid hydrocarbon spray detonation, combustion chemistry, injector and flow field mixing, and advanced diagnostics to study the fundamental phenomena of importance under both static and dynamic conditions representative of actual pulse detonation engine operation. The team focused its effort on conducting key experiments and analysis in the areas of (a) Fundamental Detonation Studies, (b) Injection, Mixing and Initiation, (c) Inlet-Combustor-Nozzle Performance, (d) Multi-Cycle Operation, and (e) Computer Simulation and Cycle Analysis. These study areas are five of seven topic areas that have been delineated by the Office of Naval Research (ONR) in their roadmap on pulse detonation engine research necessary for developing the technologies needed for the design of an air-breathing pulse detonation engine. The results obtained in these five study areas under this effort by researchers at Penn State, Caltech and Princeton University, coupled with the results of the effort by the sister MURI team led by the University of California at San Diego in some of the aforementioned study areas and in the remaining two study areas of (a) Diagnostics and Sensors, and (b) Dynamics and Control provide the foundation needed for the development of a PDE system. The overall success of the program stems from ONR led coordination that fostered collaboration between the two MURI research efforts and government laboratories and industry research through a series of progress workshops held at six-month intervals.

Book Development of a Gas Fed Pulse Detonation Research Engine

Download or read book Development of a Gas Fed Pulse Detonation Research Engine written by R. J. Litchford and published by . This book was released on 2001 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Real Gas Effects on the Performance of Hydrocarbon fueled Pulse Detonation Engines

Download or read book Real Gas Effects on the Performance of Hydrocarbon fueled Pulse Detonation Engines written by Louis A. Povinelli and published by . This book was released on 2003 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gaseous Detonation Physics and Its Universal Framework Theory

Download or read book Gaseous Detonation Physics and Its Universal Framework Theory written by Zonglin Jiang and published by Springer Nature. This book was released on 2022-12-16 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.

Book Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

Download or read book Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines written by Lord Kahil Cole and published by . This book was released on 2012 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able o investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be ignificantly altered by reasonable applied magnetic fields (Bz & le 8T), but that it takes a stronger applied field (Bz> 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.

Book A Computational Study of Thermo fluid Dynamics of Pulse Detonation Engines

Download or read book A Computational Study of Thermo fluid Dynamics of Pulse Detonation Engines written by Alberto Dávila Urresti and published by . This book was released on 2005 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The purpose of this thesis is to use a transient Computational Fluid Dynamics computer code written in FORTRAN 90 for full reaction kinetics, to perform an analysis of the physical processes and chemical phenomena occurring on a single cycle of an ideal Pulse Detonation Engine (PDE) using a stoichiometric mixture of H2 and O2."--Leaf iii.

Book Pulse Detonation Physiochemical and Exhaust Relaxation Processes

Download or read book Pulse Detonation Physiochemical and Exhaust Relaxation Processes written by and published by . This book was released on 2006 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this program is to establish the scientific knowledge of detonation initiation, propagation, and blow-down needed to develop a pulse detonation engine (PDE) that will function on hydrocarbon fuels. The complex interaction of chemistry, gas dynamics, turbulent mixing, and geometry are responsible for the success or failure of the detonation phenomena required to operate a PDE. Detonation tube exhaust blow-down conditions, which are predicted to have a significant impact upon performance, will be explored in order to achieve basic understanding of the relationships between detonation, nozzles, and multiple detonation tube interactions.

Book REAL GAS EFFECTS ON THE PERFORMANCE OF HYDROCARBON FUELED PULSE DETONATION ENGINES    NASA TM  2003 212211    NATIONAL AERONAUTICS AND SPACE

Download or read book REAL GAS EFFECTS ON THE PERFORMANCE OF HYDROCARBON FUELED PULSE DETONATION ENGINES NASA TM 2003 212211 NATIONAL AERONAUTICS AND SPACE written by United States. National Aeronautics and Space Administration and published by . This book was released on 2003* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: