EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil

Download or read book Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil written by U. Drost and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2-Jun 5, 1997.

Book Effect of Film Hole Shape on Turbine Blade Film Cooling Performance

Download or read book Effect of Film Hole Shape on Turbine Blade Film Cooling Performance written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-05-30 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.Han, J. C. and Teng, S.Glenn Research CenterHEAT TRANSFER COEFFICIENTS; COOLANTS; TEMPERATURE PROFILES; SUCTION; TURBINE BLADES; HEAT MEASUREMENT; FILM COOLING; BOUNDARY LAYER TRANSITION; CASCADE WIND TUNNELS; CYLINDRICAL BODIES; EJECTION; GAS TURBINES; HOLE DISTRIBUTION (MECHANICS); LIQUID CRYSTALS; LOW SPEED; THERMAL PROTECTION; THERMOCOUPLES; WIND TUNNELS

Book Heat Transfer Measurements in Rotating Turbine Blade Cooling Channel Configurations Using the Transient Thermochromic Liquid Crystal Technique

Download or read book Heat Transfer Measurements in Rotating Turbine Blade Cooling Channel Configurations Using the Transient Thermochromic Liquid Crystal Technique written by Christian Waidmann and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Experimental Methods in Heat Transfer and Fluid Mechanics

Download or read book Experimental Methods in Heat Transfer and Fluid Mechanics written by Je-Chin Han and published by CRC Press. This book was released on 2020-05-20 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental Methods in Heat Transfer and Fluid Mechanics focuses on how to analyze and solve the classic heat transfer and fluid mechanics measurement problems in one book. This work serves the need of graduate students and researchers looking for advanced measurement techniques for thermal, flow, and heat transfer engineering applications. The text focuses on analyzing and solving classic heat transfer and fluid mechanics measurement problems, emphasizing fundamental principles, measurement techniques, data presentation, and uncertainty analysis. Overall, the text builds a strong and practical background for solving complex engineering heat transfer and fluid flow problems. Features Provides students with an understandable introduction to thermal-fluid measurement Covers heat transfer and fluid mechanics measurements from basic to advanced methods Explains and compares various thermal-fluid experimental and measurement techniques Uses a step-by-step approach to explaining key measurement principles Gives measurement procedures that readers can easily follow and apply in the lab

Book Experimental Investigations of Heat Transfer and Film Cooling Effectiveness Using the Transient Liquid Crystal Technique

Download or read book Experimental Investigations of Heat Transfer and Film Cooling Effectiveness Using the Transient Liquid Crystal Technique written by Alexander Hoffs and published by . This book was released on 1996 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Investigation of the Effect of Freestream Turbulence on Film Cooling Using Thermochromic Liquid Crystal Thermography

Download or read book An Experimental Investigation of the Effect of Freestream Turbulence on Film Cooling Using Thermochromic Liquid Crystal Thermography written by James Edward Mayhew and published by . This book was released on 1999 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade

Download or read book Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade written by Mohamed Gaber Ghorab and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced cooling techniques are essential for further improvement in the efficiency and the power output of gas turbines. Turbine inlet temperatures of 1900 K are typical of current gas turbines, and there is an interest in increasing the temperatures for the next generation of gas turbine engines. Over the past decades, significant effort has been devoted to increase the turbine efficiency and to develop effective cooling strategies to maintain the blade temperature below the melting point of the alloys used to construct the airfoils. As a result, various cooling strategies have been developed such as film, impingement, and muti-pass cooling for the blades, and evaporative cooling for the inlet air. In this work, a state-of-the-art thermal turbomachinery test rig was designed and constructed to investigate the film-cooling performance of advanced film cooling schemes over a flat plate. Designing and constructing mechanical parts, as well developing software codes (Labview and image processing) for transient film cooling measurement was the foremost part of the current experimental work. The thermochromic liquid crystal (TLC) technique was used to measure wall surface temperature. A circular film hole was used to validate the current experimental technique and methodology. The validation results showed that the current experimental technique and methodology were deemed reliable. Subsequently, the film cooling performance of the louver and new hybrid schemes were investigated, experimentally. The louver scheme was proposed by Pratt and Whitney Canada (PWC) to allow the cooling flow to pass through a bend and to encroach an airfoil material (impingement effect), then exit to the outer surface of the airfoil through a designed film hole. Immarigeon and Hassan (2006) then Zhang and Hassan (2006) numerically investigated the film cooling effectiveness performance of the louver scheme. The hybrid scheme was proposed in the current study, which includes two consecutive film hole configurations with interior bending. The cooling performances for the two advanced schemes have been analyzed experimentally over a flat plate across blowing ratios of 0.5, 1.0 and 1.5 at a density ratio of 0.94. The results showed that the louver and the hybrid schemes enhanced the local and the average film cooling performance in terms of film cooling effectiveness, and the net heat flux reductions are better than other published film hole configurations. In addition, both schemes provided an extensively wide spray of 'secondary flow over the outer surface, and thus enhanced the lateral film cooling performance over the downstream surface area. Moreover, the two schemes produced an average heat transfer coefficient ratio near unity at low and high blowing ratios. As a result, the louver and the hybrid schemes are expected to reduce the temperature of the outer surface of the gas turbine airfoil and to provide superior cooling performance, which increases airfoil lifetime. In addition, the adiabatic film cooling performance and flow characteristics for the hybrid scheme were investigated numerically. The numerical investigation was analyzed across blowing ratio, of 0.5, 1, and 2. The flow structures of the hybrid scheme are presented at different blowing ratios to provide a better physical understanding. The results showed that the hybrid scheme directed the secondary flow in the horizontal direction and reduced the jet liftoff at different blowing ratios. Finally, conjugate heat transfer (CHT) and film-cooling analyses were performed to investigate the hybrid scheme performance with different flow configurations. Different geometries of parallel flow and jet impingement with different gap heights as well as the adiabatic case study were investigated at blowing ratios of 0.5 and 1.0. The results showed that the adiabatic case provided downstream centerline superlative cooling performance near the hybrid film hole exit compared to other conjugate geometries studied. At the downstream location, the impingement configuration with a large gap height provided the highest downstream performance at blowing ratio of 0.5 and 1.0 with respect to other cases studied. Moreover, the downstream film cooling performance was enhanced far along the spanwise direction for the CHT cases studied and it has the highest value near the scheme exit for parallel configuration. In addition, the impingement configuration enhanced the upper stream cooling performance compared to parallel flow and it was further enhanced for large gap heights. Keywords: film cooling effectiveness, heat transfer coefficient ratio, louver, hybrid, TLC, NHFR, CHT.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Gas Turbine Heat Transfer and Cooling Technology

Download or read book Gas Turbine Heat Transfer and Cooling Technology written by Je-Chin Han and published by Taylor & Francis. This book was released on 2012-11-27 with total page 865 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, this second edition focuses on gas turbine heat transfer issues and their associated cooling technologies for aircraft and land-based gas turbines. It provides information on state-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling schemes. The book also offers updated experimental methods for gas turbine heat transfer and cooling research, as well as advanced computational models for gas turbine heat transfer and cooling performance predictions. The authors provide suggestions for future research within this technology and includes 800 illustrations to help clarify concepts and instruction.

Book Transient Liquid Crystal Technique for Convective Heat Transfer on Rough Surfaces

Download or read book Transient Liquid Crystal Technique for Convective Heat Transfer on Rough Surfaces written by Douglas N. Barlow and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exposition, Houston, Texas - June 5-8, 1995.

Book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications

Download or read book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications written by Raymond Strong Colladay and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.