Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Download or read book Fundamentals of Stochastic Filtering written by Alan Bain and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Download or read book Fundamentals of Stochastic Networks written by Oliver C. Ibe and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary approach to understanding queueing and graphical networks In today's era of interdisciplinary studies and research activities, network models are becoming increasingly important in various areas where they have not regularly been used. Combining techniques from stochastic processes and graph theory to analyze the behavior of networks, Fundamentals of Stochastic Networks provides an interdisciplinary approach by including practical applications of these stochastic networks in various fields of study, from engineering and operations management to communications and the physical sciences. The author uniquely unites different types of stochastic, queueing, and graphical networks that are typically studied independently of each other. With balanced coverage, the book is organized into three succinct parts: Part I introduces basic concepts in probability and stochastic processes, with coverage on counting, Poisson, renewal, and Markov processes Part II addresses basic queueing theory, with a focus on Markovian queueing systems and also explores advanced queueing theory, queueing networks, and approximations of queueing networks Part III focuses on graphical models, presenting an introduction to graph theory along with Bayesian, Boolean, and random networks The author presents the material in a self-contained style that helps readers apply the presented methods and techniques to science and engineering applications. Numerous practical examples are also provided throughout, including all related mathematical details. Featuring basic results without heavy emphasis on proving theorems, Fundamentals of Stochastic Networks is a suitable book for courses on probability and stochastic networks, stochastic network calculus, and stochastic network optimization at the upper-undergraduate and graduate levels. The book also serves as a reference for researchers and network professionals who would like to learn more about the general principles of stochastic networks.
Download or read book Basics of Applied Stochastic Processes written by Richard Serfozo and published by Springer Science & Business Media. This book was released on 2009-01-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Download or read book Introduction to Matrix Analytic Methods in Stochastic Modeling written by G. Latouche and published by SIAM. This book was released on 1999-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Download or read book Fundamentals of Stochastic Models written by Zhe George Zhang and published by CRC Press. This book was released on 2023-05-18 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic modeling is a set of quantitative techniques for analyzing practical systems with random factors. This area is highly technical and mainly developed by mathematicians. Most existing books are for those with extensive mathematical training; this book minimizes that need and makes the topics easily understandable. Fundamentals of Stochastic Models offers many practical examples and applications and bridges the gap between elementary stochastics process theory and advanced process theory. It addresses both performance evaluation and optimization of stochastic systems and covers different modern analysis techniques such as matrix analytical methods and diffusion and fluid limit methods. It goes on to explore the linkage between stochastic models, machine learning, and artificial intelligence, and discusses how to make use of intuitive approaches instead of traditional theoretical approaches. The goal is to minimize the mathematical background of readers that is required to understand the topics covered in this book. Thus, the book is appropriate for professionals and students in industrial engineering, business and economics, computer science, and applied mathematics.
Download or read book Essentials of Stochastic Finance written by Albert N. Shiryaev and published by World Scientific. This book was released on 1999 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos.
Download or read book Foundations and Methods of Stochastic Simulation written by Barry Nelson and published by Springer Science & Business Media. This book was released on 2013-01-31 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also provided.
Download or read book Stochastic Models Information Theory and Lie Groups Volume 1 written by Gregory S. Chirikjian and published by Springer Science & Business Media. This book was released on 2009-09-02 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
Download or read book Foundations of Stochastic Inventory Theory written by Evan L. Porteus and published by Stanford University Press. This book was released on 2002 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has a dual purpose?serving as an advanced textbook designed to prepare doctoral students to do research on the mathematical foundations of inventory theory, and as a reference work for those already engaged in such research. All chapters conclude with exercises that either solidify or extend the concepts introduced.
Download or read book Stochastic Modeling written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basic Stochastic Processes written by Zdzislaw Brzezniak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Download or read book Foundations of Deterministic and Stochastic Control written by Jon H. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Download or read book Elements of Stochastic Modelling written by K. A. Borovkov and published by World Scientific. This book was released on 2003 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments ? with indications as to why a particular result holds, and also how it is connected with other results ? and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.
Download or read book Fundamentals of Queueing Networks written by Hong Chen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible book aims to collect in a single volume the essentials of stochastic networks. Stochastic networks have become widely used as a basic model of many physical systems in a diverse range of fields. Written by leading authors in the field, this book is meant to be used as a reference or supplementary reading by practitioners in operations research, computer systems, communications networks, production planning, and logistics.
Download or read book Stochastic Models Information Theory and Lie Groups Volume 2 written by Gregory S. Chirikjian and published by Springer Science & Business Media. This book was released on 2011-11-15 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applications make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.