EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Dispersed Multiphase Flows

Download or read book Fundamentals of Dispersed Multiphase Flows written by S. Balachandar and published by Cambridge University Press. This book was released on 2024-03-31 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dispersed multiphase flows are everywhere, from a sneeze to a volcanic eruption. Discover the fundamental physics that connects them all.

Book Fundamentals of Dispersed Multiphase Flows

Download or read book Fundamentals of Dispersed Multiphase Flows written by S. Balachandar and published by Cambridge University Press. This book was released on 2024-03-28 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dispersed multiphase flows are frequently found in nature and have diverse geophysical, environmental, industrial, and energy applications. This book targets a beginning graduate student looking to learn about the physical processes that govern these flows, going from the fundamentals to the state of the art, with many exercises included.

Book Fundamentals of Dispersed Multiphase Flows

Download or read book Fundamentals of Dispersed Multiphase Flows written by Balachandar, S. and published by Cambridge University Press. This book was released on 2024-03-07 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Download or read book Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows written by Lixing Zhou and published by Butterworth-Heinemann. This book was released on 2018-01-25 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. - Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory - Covers physical phenomena, numerical modeling theory and methods, and their applications - Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.

Book Fundamentals of Multiphase Flow

Download or read book Fundamentals of Multiphase Flow written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2005-04-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Theory of Dispersed Multiphase Flow

Download or read book Theory of Dispersed Multiphase Flow written by Richard E. Meyer and published by Academic Press. This book was released on 2014-05-10 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics Research Center Symposium: Theory of Dispersed Multiphase Flow covers the proceedings of an advanced seminar conducted by the Mathematics Research Center of the University of Wisconsin-Madison on May 26-28, 1982. The book focuses on solutions of long chain polymers in liquids, magnetic control of particle suspensions in fluid streams, aerosols, dense granular flows, and ice crystals or vapor bubbles dispersed in river waters. The selection first elaborates on the effects of interactions between particles on the rheology of dispersions; rheology of concentrated macromolecular solutions; and a survey of results in the mathematical theory of fluidization. Discussions focus on Rayleigh-Taylor instabilities, linear instability theory, steady solutions, general theory for polymer solutions and suspensions, electrostatically concentrated suspensions, and pair interaction theories. The text then examines instability in settling of suspensions due to Brownian effects; enhanced sedimentation in vessels having inclined walls; and simple kinetic theory of Brownian diffusion in vapors and aerosols. The text takes a look at the simulation of aerosol dynamics, continuum modeling of two-phase flows, multiphase mixture theory for fluid-particle flows, and mixture theory for turbulent diffusion of heavy particles. Topics include plane gravity flow, decomposition and averaging, isothermal flows of dilute suspensions, kinematics and the equations of motion, diffusional regularization, kinematic waves, and aerosol formation and growth in uniform systems. The selection is a valuable source of data for researchers interested in the theory of dispersed multiphase flow.

Book Physics of Granular Suspensions

Download or read book Physics of Granular Suspensions written by Marco Mazzuoli and published by Springer Nature. This book was released on with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiphase Flow Handbook

    Book Details:
  • Author : Efstathios Michaelides
  • Publisher : CRC Press
  • Release : 2016-10-26
  • ISBN : 1498701019
  • Pages : 1421 pages

Download or read book Multiphase Flow Handbook written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Book Multiphase Flow in Polymer Processing

Download or read book Multiphase Flow in Polymer Processing written by Chang Han and published by Elsevier. This book was released on 2012-12-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Flow in Polymer Processing focuses on dispersed and stratified multiphase flow in polymer processing. This book explores the rheological behavior of multiphase (or multicomponent) polymeric systems as they are involved in various fabrication operations. It also outlines the importance of the morphological states of multiphase polymeric systems to explain the systems, rheological behavior in the fluid state, and mechanical behavior in the solid state. This monograph consists of eight chapters divided into two parts. After discussing dispersed and stratified multiphase flow in polymer processing, it introduces the reader to the fundamentals of rheology. The following chapters focus on the rheological behavior of particulate-filled polymeric systems and heterogeneous polymeric systems; the phenomenon of droplet breakup in dispersed flow; and gas-charged polymeric systems. The role of the discrete phase (that is, solid particles, liquid droplets, gas bubbles) in determining the bulk rheological properties of the multiphase system is highlighted, along with some representative polymer processing operations (namely, fiber spinning and injection molding) of the multiphase (or multicomponent) polymeric systems. Coextrusion in cylindrical, rectangular, and annular dies is also considered. The final chapter is devoted to the phenomenon of interfacial instability in coextrusion. This text will be a useful resource for chemists, chemical engineers, and those in the polymer processing industry.

Book Dynamics of Multiphase Flows

Download or read book Dynamics of Multiphase Flows written by Chao Zhu and published by Cambridge University Press. This book was released on 2021-06-17 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Address physical principles and unified theories governing multiphase flows, with methods, applications, and problems.

Book Multiphase Flows with Droplets and Particles

Download or read book Multiphase Flows with Droplets and Particles written by Clayton T. Crowe and published by CRC Press. This book was released on 2011-08-26 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha

Book Multiphase Flow Dynamics 1

Download or read book Multiphase Flow Dynamics 1 written by Nikolay Ivanov Kolev and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

Book Theory of Dispersed Multiphase Flow

Download or read book Theory of Dispersed Multiphase Flow written by and published by . This book was released on 1983 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiphase Flow Dynamics 1

Download or read book Multiphase Flow Dynamics 1 written by Nikolay Ivanov Kolev and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

Book Fundamentals of Multiphase Heat Transfer and Flow

Download or read book Fundamentals of Multiphase Heat Transfer and Flow written by Amir Faghri and published by Springer Nature. This book was released on 2019-09-13 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.

Book Multiphase Flow Dynamics 4

Download or read book Multiphase Flow Dynamics 4 written by Nikolay Ivanov Kolev and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections.